Noninvasive Blood Glucose Concentration Measurement Based on Conservation of Energy Metabolism and Machine Learning
Abstract
:1. Introduction
2. Principles and Methods
2.1. Conservation of Energy Metabolism
- (a)
- The human body is a thermal balance system, and the amount of heat generated is equal to the amount of heat dissipated.
- (b)
- The main modes of heat dissipation from the body are thermal radiation, thermal convection, and thermal evaporation.
- (c)
- The external work done by the human body at rest is 0.
- (d)
- The oxygen content in human blood is related to the HR and blood flow rate (BF).
- (e)
- The metabolic heat production of the human body is related to the BG concentration, oxygen saturation (SpO2), and HR.
2.2. Calculation of Metabolic Heat Production
2.3. Calculation of SpO2 and HR
3. System Composition
Design of Multisensor Integrated Detection Probe
4. Machine-Learning Models for BG Level Prediction
4.1. Multiple Polynomial Regression
4.2. BPNN
4.3. Model Evaluation Indexes
5. Experiments and Results
5.1. Experimental
5.2. Performance Comparisons of the Machine-Learning Models
5.3. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Inzucchi, S.E.; Bergenstal, R.M.; Buse, J.B.; Diamant, M.; Ferrannini, E.; Nauck, M.; Peters, A.L.; Tsapas, A.; Wender, R.; Matthews, D.R. Management of Hyperglycemia in Type 2 Diabetes, 2015: A Patient-Centered Approach Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2015, 38, 140–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, R.; Karuranga, S.; Malanda, B.; Saeedi, P.; Basit, A.; Besançon, S.; Bommer, C.; Esteghamati, A.; Ogurtsova, K.; Zhang, P.; et al. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2020, 162, 108072. [Google Scholar] [CrossRef] [Green Version]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Bolla, A.S.; Priefer, R. Blood glucose monitoring- an overview of current and future non-invasive devices. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 739–751. [Google Scholar] [CrossRef]
- Lee, I.; Probst, D.; Klonoff, D.; Sode, K. Continuous glucose monitoring systems-Current status and future perspectives of the flagship technologies in biosensor research. Biosens. Bioelectron. 2021, 181, 113054. [Google Scholar] [CrossRef]
- Lekha, S.; Suchetha, M. Recent Advancements and Future Prospects on E-Nose Sensors Technology and Machine Learning Approaches for Non-Invasive Diabetes Diagnosis: A Review. IEEE Rev. Biomed. Eng. 2020, 14, 127–138. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, J.-P.; Zhu, J.; Liang, S.-L. An Accurate Noninvasive Blood Glucose Measurement System Using Portable Near-Infrared Spectrometer and Transfer Learning Framework. IEEE Sens. J. 2021, 21, 3506–3519. [Google Scholar]
- Sim, J.Y.; Ahn, C.-G.; Jeong, E.-J.; Kim, B.K. In vivo Microscopic Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring Invulnerable to Skin Secretion Products. Sci. Rep. 2018, 8, 1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Li, G.; Yan, W.-J.; Lin, L. Classification of diabetes and measurement of blood glucose concentration noninvasively using near infrared spectroscopy. Infrared Phys. Technol. 2014, 67, 574–582. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tajima, T.; Seyama, M.; Waki, K. Differential Continuous Wave Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring. IEEE Sens. J. 2020, 20, 4453–4458. [Google Scholar] [CrossRef]
- Burmeister, J.J.; Arnold, M.A. Evaluation of measurement sites for noninvasive blood glucose sensing with near-infrared transmission spectroscopy. Clin. Chem. 1999, 45, 1621–1627. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.V.; Nguyen, T.V.; Nguyen, N.D.; Piro, B.; Huynh, C.D. A nanocomposite prepared from FeOOH and N-doped carbon nanosheets as a peroxidase mimic, and its application to enzymatic sensing of glucose in human urine. Microchim. Acta 2018, 185, 270. [Google Scholar] [CrossRef] [PubMed]
- Mohammadifar, M.; Tahernia, M.; Choi, S. An Equipment-Free, Paper-Based Electrochemical Sensor for Visual Monitoring of Glucose Levels in Urine. Slas Technol. 2019, 24, 499–505. [Google Scholar] [CrossRef]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kim, J.; Kim, S.-Y.; Cheong, W.H.; Jang, J.; Park, Y.-G.; Na, K.; Kim, Y.-T.; Heo, J.H.; Lee, C.Y.; et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 2018, 4, eaap9841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.K.; Jha, S.K. Fabrication and Validation of a Handheld Non-Invasive, Optical Biosensor for Self-Monitoring of Glucose Using Saliva. IEEE Sens. J. 2019, 19, 8332–8339. [Google Scholar] [CrossRef]
- Monte-Moreno, E. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques. Artif. Intell. Med. 2011, 53, 127–138. [Google Scholar] [CrossRef]
- Habbu, S.; Dale, M.; Ghongade, R. Estimation of blood glucose by non-invasive method using photoplethysmography. Sadhana-Acad. Proc. Eng. Sci. 2019, 44, 135. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Mei, Z.; Zhang, Y.; Ma, X.; Lo, B.; Chen, D.; Zhang, Y. A Noninvasive Blood Glucose Monitoring System Based on Smartphone PPG Signal Processing and Machine Learning. IEEE Trans. Ind. Inform. 2020, 16, 7209–7218. [Google Scholar] [CrossRef]
- Cho, O.K.; Kim, Y.O.; Mitsumaki, H.; Kuwa, K. Noninvasive measurement of glucose by metabolic heat conformation method. Clin. Chem. 2004, 50, 1894–1898. [Google Scholar] [CrossRef]
- Hofsteenge, G.H.; Chinapaw, M.J.; Waal, H.A.D.-V.D.; Weijs, P.J. Validation of predictive equations for resting energy expenditure in obese adolescents. Am. J. Clin. Nutr. 2010, 91, 1244–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.-C.; Jin, X.-L.; Zhu, J.-M.; Wang, D.-Y.; Zhang, T.-T. Non-invasive glucose measuring apparatus based on conservation of energy method. J. Central South Univ. Technol. 2009, 16, 982–986. [Google Scholar] [CrossRef]
- Tang, F.; Wang, X.; Wang, D.; Li, J. Non-invasive glucose measurement by use of metabolic heat conformation method. Sensors 2008, 8, 3335–3344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, R.; Tanaka, S.; Ohkawara, K.; Ishikawa-Takata, K.; Hikihara, Y.; Taguri, E.; Kayashita, J.; Tabata, I. Validity of Predictive Equations for Basal Metabolic Rate in Japanese Adults. J. Nutr. Sci. Vitaminol. 2011, 57, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Faber, D.J.; Mik, E.G.; Aalders, M.; Van Leeuwen, T.G. Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography. Opt. Lett. 2005, 30, 1015–1017. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Bárcenas, O.; Olivas, E.S.; Martín-Guerrero, J.D.; Camps-Valls, G.; Carrasco-Rodríguez, J.; del Valle-Tascón, S. Unbiased sensitivity analysis and pruning techniques in neural networks for surface ozone modelling. Ecol. Model. 2005, 182, 149–158. [Google Scholar] [CrossRef]
- Chuedoung, M.; Sarika, W.; Lenbury, Y. Dynamical analysis of a nonlinear model for glucose-insulin system incorporating delays and beta-cells compartment. Nonlinear Anal.-Theory Methods Appl. 2009, 71, E1048–E1058. [Google Scholar] [CrossRef]
- Prado-Prado, F.J.; Garcia-Mera, X.; González-Díaz, H. Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species. Bioorg. Med. Chem. 2010, 18, 2225–2231. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Ji, Z.; Li, M.; Dai, J. Study of a noninvasive blood glucose detection model using the near-infrared light based on SA-NARX. Biomed. Signal Process. Control 2019, 56, 101694. [Google Scholar] [CrossRef]
- Clarke, W.L.; Cox, D.; Gonder-Frederick, L.A.; Carter, W.; Pohl, S.L. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care 1987, 10, 622–628. [Google Scholar] [CrossRef]
Model | mARD (%) | CORR | MAD (mmol/L) |
---|---|---|---|
MPR4 | 6.703 | 0.893 | 1.198 |
BPNN | 5.453 | 0.936 | 1.084 |
Regression Model | RMSE mmol/L | SEP mmol/L | Clarke Error Grid Analysis (%) | ||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | |||
MPR4 | 0.676 | 0.186 | 95.238 | 4.762 | 0.000 | 0.000 | 0.000 |
BPNN | 0.505 | 0.159 | 98.413 | 1.587 | 0.000 | 0.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Zhou, Y.; Huang, J.; Zhou, A.; Chen, Z. Noninvasive Blood Glucose Concentration Measurement Based on Conservation of Energy Metabolism and Machine Learning. Sensors 2021, 21, 6989. https://doi.org/10.3390/s21216989
Zhu J, Zhou Y, Huang J, Zhou A, Chen Z. Noninvasive Blood Glucose Concentration Measurement Based on Conservation of Energy Metabolism and Machine Learning. Sensors. 2021; 21(21):6989. https://doi.org/10.3390/s21216989
Chicago/Turabian StyleZhu, Jianming, Yu Zhou, Junxiang Huang, Aojie Zhou, and Zhencheng Chen. 2021. "Noninvasive Blood Glucose Concentration Measurement Based on Conservation of Energy Metabolism and Machine Learning" Sensors 21, no. 21: 6989. https://doi.org/10.3390/s21216989
APA StyleZhu, J., Zhou, Y., Huang, J., Zhou, A., & Chen, Z. (2021). Noninvasive Blood Glucose Concentration Measurement Based on Conservation of Energy Metabolism and Machine Learning. Sensors, 21(21), 6989. https://doi.org/10.3390/s21216989