A Remote Raman System and Its Applications for Planetary Material Studies
Abstract
1. Introduction
2. Experimental Setup and Samples
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, A.; Jolliff, B.L.; Haskin, L.A. Raman spectroscopy as a method for mineral identification on lunar robotic exploration missions. J. Geophys. Res. Planets 1995, 100, 21189–21199. [Google Scholar] [CrossRef]
- Wopenka, B.; Sandford, S. Laser Raman microprobe study of mineral phases in meteorites. Meteoritics 1984, 19, 340. [Google Scholar]
- Hutchinson, I.B.; Ingley, R.; Edwards, H.G.M.; Harris, L.; McHugh, M.; Malherbe, C.; Parnell, J. Raman spectroscopy on Mars: Identification of geological and bio-geological signatures in Martian analogues using miniaturized Raman spectrometers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20140204. [Google Scholar] [CrossRef] [PubMed]
- Kobayasi, T.; Inaba, H. Spectroscopic detection of SO2 and CO2 molecules in polluted atmosphere by laser-raman radar technique. Appl. Phys. Lett. 1970, 17, 139–141. [Google Scholar] [CrossRef]
- Angel, S.M.; Kulp, T.J.; Vess, T.M. Remote-Raman spectroscopy at intermediate ranges using low-power cw lasers. Appl. Spectrosc. 1992, 46, 1085–1091. [Google Scholar] [CrossRef]
- Klein, V.; Popp, J.; Tarcea, N.; Schmitt, M.; Kiefer, W.; Hofer, S.; Stuffler, T.; Hilchenbach, M.; Doyle, D.; Dieckmann, M. Remote Raman spectroscopy as a prospective tool for planetary surfaces. J. Raman Spectrosc. 2004, 35, 433–440. [Google Scholar] [CrossRef]
- Abedin, M.N.; Bradley, A.T.; Misra, A.K.; Bai, Y.; Hines, G.D.; Sharma, S.K. Standoff ultracompact micro-Raman sensor for planetary surface explorations. Appl. Opt. 2018, 57, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Sandford, M.W.; Misra, A.K.; Acosta-Maeda, T.E.; Sharma, S.K.; Porter, J.N.; Egan, M.J.; Abedin, M.N. Detecting Minerals and Organics Relevant to Planetary Exploration Using a Compact Portable Remote Raman System at 122 Meters. Appl. Spectrosc. 2021, 75, 299–306. [Google Scholar] [CrossRef]
- Cote, K.; Lallab, E.A.; Konstantinidisc, M.; Dalyd, M.; Dietrich, P. A combined Raman, LIF, and micro-LIBS system with time-resolved fluorescence capabilities for planetary exploration applications. In Proceedings of the International Astronautical Congress (IAC), Washington, DC, USA, 20–25 October 2019; International Astronautical Federation (IAF): Paris, France, 2019. [Google Scholar]
- Misra, A.K.; Sharma, S.K.; Lucey, P.G. Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse. Appl. Spectrosc. 2006, 60, 223–228. [Google Scholar] [CrossRef]
- Clegg, S.; Wiens, R.; Misra, A.K.; Sharma, S.K.; Lambert, J.; Bender, S.; Newell, R.; Nowak-Lovato, K.; Smrekar, S.; Dyar, M.D.; et al. Remote Raman-laser induced breakdown spectroscopy (LIBS) geochemical investigation under Venus atmospheric conditions. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 7–11 March 2011. [Google Scholar]
- Clegg, S.; Sharma, S.K.; Misra, A.K.; Dyar, M.D.; Dallmann, N.; Wiens, R.C.; Vaniman, D.T.; Speicher, E.A.; Smrekar, S.E.; Wang, A.; et al. Raman and laser-induced breakdown spectroscopy (LIBS) remote geochemical analysis under Venus atmospheric pressure. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2012. [Google Scholar]
- Sharma, S.K.; Misra, A.K.; Clegg, S.M.; Barefield, J.E.; Wiens, R.C.; Acosta, T.E.; Bates, D.E. Remote-Raman spectroscopic study of minerals under supercritical CO2 relevant to Venus exploration. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 80, 75–81. [Google Scholar] [CrossRef]
- Sharma, S.K.; Misra, A.K.; Clegg, S.; Barefield, J.; Wiens, R.C.; Acosta, T. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 3167–3191. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sharma, S.K.; Misra, A.K.; Lucey, P.G.; Lentz, R.C. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 73, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Lucey, P.G.; Ghosh, M.; Hubble, H.W.; Horton, K.A. Stand-off Raman spectroscopic detection of minerals on planetary surfaces. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2003, 59, 2391–2407. [Google Scholar] [CrossRef]
- Stopar, J.D.; Lucey, P.G.; Sharma, S.K.; Misra, A.K.; Taylor, G.J.; Hubble, H.W. Raman efficiencies of natural rocks and minerals: Performance of a remote Raman system for planetary exploration at a distance of 10 meters. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 2315–2323. [Google Scholar] [CrossRef]
- Sharma, S.K.; Angel, S.M.; Ghosh, M.; Hubble, H.W.; Lucey, P.G. Remote pulsed laser Raman spectroscopy system for mineral analysis on planetary surfaces to 66 meters. Appl. Spectrosc. 2002, 56, 699–705. [Google Scholar] [CrossRef]
- Misra, A.K.; Acosta-Maeda, T.E.; Porter, J.N.; Egan, M.J.; Sandford, M.W.; Oyama, T.; Zhou, J. Remote Raman detection of chemicals from 1752 m during afternoon daylight. Appl. Spectrosc. 2020, 74, 233–240. [Google Scholar] [CrossRef]
- Wiens, R.C.; Maurice, S.; Robinson, S.H.; Nelson, A.E.; Cais, P.; Bernardi, P.; Newell, R.T.; Clegg, S.; Sharma, S.K.; Storms, S.; et al. The SuperCam instrument suite on the NASA Mars 2020 rover: Body unit and combined system tests. Space Sci. Rev. 2021, 217, 1–87. [Google Scholar] [CrossRef]
- Beegle, L.; Bhartia, R.; White, M.; DeFlores, L.; Abbey, W.; Wu, Y.-H.; Cameron, B.; Moore, J.; Fries, M.; Burton, A.; et al. SHERLOC: Scanning habitable environments with Raman & luminescence for Organics & Chemicals. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Perez, R.; Parès, L.P.; Newell, R.; Robinson, S.; Bernardi, P.; Réess, J.-M.; Caïs, P.; McCabe, K.; Maurice, S.; Wiens, R.C. The supercam instrument on the NASA Mars 2020 mission: Optical design and performance. In Proceedings of the International Conference on Space Optics—ICSO 2016, Biarritz, France, 18–21 October 2016; International Society for Optics and Photonics: Bellingham, WA, USA, 2017. [Google Scholar]
- Veneranda, M.; Parès, L.P.; Newell, R.; Robinson, S.; Bernardi, P.; Réess, J.-M.; Caïs, P.; McCabe, K.; Maurice, S.; Wiens, R.C. ExoMars Raman Laser Spectrometer (RLS): Development of chemometric tools to classify ultramafic igneous rocks on Mars. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Wan, W.; Wang, C.; Li, C.L.; Wei, Y. China’s first mission to Mars. Nat. Astron. 2020, 4, 721. [Google Scholar] [CrossRef]
- Ling, Z.; Wang, A. A systematic spectroscopic study of eight hydrous ferric sulfates relevant to Mars. Icarus 2010, 209, 422–433. [Google Scholar] [CrossRef]
- Liu, D.; Ullman, F.G.; Hardy, J.R. Raman scattering and lattice-dynamical calculations of crystalline KNO 3. Phys. Rev. B 1992, 45, 2142. [Google Scholar] [CrossRef] [PubMed]
- Brooker, M. Raman study of the structural properties of KNO3 (II). Can. J. Chem. 1977, 55, 1242–1250. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Anbalagan, G.; Pandi, S. Raman and infrared spectra of carbonates of calcite structure. J. Raman Spectrosc. Int. J. Orig. Work Asp. Raman Spectrosc. Incl. High. Order Process. Brillouin Rayleigh Scatt. 2006, 37, 892–899. [Google Scholar] [CrossRef]
- Koura, N.; Kohara, S.; Takeuchi, K.; Takahashi, S.; Curtiss, L.; Grimsditch, M.; Saboungi, M.-L. Alkali carbonates: Raman spectroscopy, ab initio calculations, and structure. J. Mol. Struct. 1996, 382, 163–169. [Google Scholar] [CrossRef]
- Buzgar, N.; Apopei, A.I. The Raman study of certain carbonates. Geol. Tomul L 2009, 2, 97–112. [Google Scholar]
- Zapata, F.; García-Ruiz, C. The discrimination of 72 nitrate, chlorate and perchlorate salts using IR and Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 189, 535–542. [Google Scholar] [CrossRef]
- Kounaves, S.; Carrier, B.L.; O’Neil, G.; Stroble, S.T.; Claire, M. Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics. Icarus 2014, 229, 206–213. [Google Scholar] [CrossRef]
- Leshin, L.A.; Mahaffy, P.R.; Webster, C.R.; Cabane, M.; Coll, P.; Conrad, P.G.; Archer, P.D.; Atreya, S.K.; Brunner, A.E.; Buch, A.; et al. Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover. Science 2013, 341, 1238937. [Google Scholar] [CrossRef]
- Navarro-González, R.; Vargas, E.; de la Rosa, J.; Raga, A.C.; McKay, C.P. Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. Planets 2010, 115, E12. [Google Scholar] [CrossRef]
- Jackson, W.A.; Davila, A.F.; Sears, D.W.; Coates, J.D.; McKay, C.P.; Brundrett, M.; Estrada, N.; Bohlke, J.K. Widespread occurrence of (per) chlorate in the Solar System. Earth Planet. Sci. Lett. 2015, 430, 470–476. [Google Scholar] [CrossRef]
- Nuding, D.L.; Gough, R.V.; Venkateswaran, K.J.; Spry, J.A.; Tolbert, M.A. Laboratory investigations on the survival of Bacillus subtilis spores in deliquescent salt Mars analog environments. Astrobiology 2017, 17, 997–1008. [Google Scholar] [CrossRef]
- Arvidson, R.E.; Poulet, F.; Bibring, J.-P.; Wolff, M.; Gendrin, A.; Morris, R.V.; Freeman, J.J.; Langevin, Y.; Mangold, N.; Bellucci, G. Spectral reflectance and morphologic correlations in eastern Terra Meridiani, Mars. Science 2005, 307, 1591–1594. [Google Scholar] [CrossRef]
- Buzgar, N.; Buzatu, A.; Sanislav, I.V. The Raman Study on Certain Sulfates; Analele Stiintifice ale Universitatii Al. I. Cuza: Iasi, Romania, 2009; Volume 55, pp. 5–23. [Google Scholar]
- Cao, H.; Chen, J.; Ling, Z. Laboratory synthesis and spectroscopic studies of hydrated Al-sulfates relevant to Mars. Icarus 2019, 333, 283–293. [Google Scholar] [CrossRef]
- Moskovits, M.; Michaelian, K. A reinvestigation of the Raman spectrum of water. J. Chem. Phys. 1978, 69, 2306–2311. [Google Scholar] [CrossRef]
- Đuričković, I.; Claverie, R.; Bourson, P.; Marchetti, M.; Chassot, J.; Fontana, M.D. Water–ice phase transition probed by Raman spectroscopy. J. Raman Spectrosc. 2011, 42, 1408–1412. [Google Scholar] [CrossRef]
- Clark, R.N. Detection of adsorbed water and hydroxyl on the Moon. Science 2009, 326, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Jakosky, B.M.; Haberle, R.M. The seasonal behavior of water on Mars. Mars 1992, 969–1016. [Google Scholar]
- Paige, D.A.; Wood, S.E.; Vasavada, A.R. The thermal stability of water ice at the poles of Mercury. Science 1992, 258, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Burikov, S.; Dolenko, T.; Patsaeva, S.; Starokurov, Y.; Yuzhakov, V. Raman and IR spectroscopy research on hydrogen bonding in water–ethanol systems. Mol. Phys. 2010, 108, 2427–2436. [Google Scholar] [CrossRef]
- De Gelder, J.; de Gussem, K.; Vandenabeele, P.; Moens, L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. Int. J. Orig. Work Asp. Raman Spectrosc. Incl. High. Order Process. Brillouin Rayleigh Scatt. 2007, 38, 1133–1147. [Google Scholar] [CrossRef]
- Krishnamurti, D. The Raman spectrum of quartz and its interpretation. Indian Acad. Sci. Sect. A 1958, 47, 276–291. [Google Scholar] [CrossRef]
- Krishnan, R.S. Raman spectrum of quartz. Nature 1945, 155, 452. [Google Scholar] [CrossRef]
- Freeman, J.J.; Wang, A.; Kuebler, K.E.; Jolliff, B.L.; Haskin, L.A. Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. Can. Mineral. 2008, 46, 1477–1500. [Google Scholar] [CrossRef]
- Kuebler, K.E.; Jolliff, B.L.; Wang, A.; Haskin, L.A. Extracting olivine (Fo–Fa) compositions from Raman spectral peak positions. Geochim. Cosmochim. Acta 2006, 70, 6201–6222. [Google Scholar] [CrossRef]
- McMillan, P.F.; Wolf, G.H.; Lambert, P. A Raman spectroscopic study of shocked single crystalline quartz. Phys. Chem. Miner. 1992, 19, 71–79. [Google Scholar] [CrossRef]
- Ling, Z.; Wang, A.; Jolliff, B.L. Mineralogy and geochemistry of four lunar soils by laser-Raman study. Icarus 2011, 211, 101–113. [Google Scholar] [CrossRef]
- Chen, J.; Jolliff, B.L.; Wang, A.; Korotev, R.L.; Wang, K.; Carpenter, P.K.; Chen, H.; Ling, Z.; Fu, X.; Ni, Y.; et al. Petrogenesis and shock metamorphism of basaltic lunar meteorites Northwest Africa 4734 and 10597. J. Geophys. Res. Planets 2019, 124, 2583–2598. [Google Scholar] [CrossRef]
- HORIBA. Determining Signal to Noise Ratio of a Spectrofluorometer: Methods and Formulas to Ensure Accurate Sensitivity Comparisons. Available online: https://www.horiba.com/en_en/technology/spectroscopy/fluorescence-spectroscopy/how-to-calculate-signal-to-noise-ratio/ (accessed on 12 September 2021).









| K2CO3 | CaCO3 | KNO3 | Assignments |
|---|---|---|---|
| 142 191 | 154 281 | 137 | T (K, CO3) T (Ca, CO3) B1g (KNO3) |
| 690 | 712 | 716 | ν4-Asymmetric bending mode |
| 1063 | 1085 | 1052 | ν1-Symmetric stretching mode |
| 1407 | 1438 | 1362 1364 | ν3-Asymmetric stretching mode |
| 1768 | 1755 | ν1 + ν4 |
| KClO4 | H2O | 6H2O | Assignments |
|---|---|---|---|
| 463 | 475 452 | 464 | Deformation (ν2 (E)) |
| 629 | 632 | 623 | Deformation (ν4 (T2)) |
| 942 | 954 | 936 | Symmetric stretch (ν1 (A1)) |
| 1125 1088 | 1149 1092 | 1091 | Anti-symmetric stretch (ν3 (T2)) |
7H2O | 7H2O | 2H2O | 4H2O | 18H2O | Assignments |
|---|---|---|---|---|---|
| 366 | 140 238 375 | 239 378 | 310 | T (Fe, H2O) T (Mg, H2O) T (Ca, H2O) T (Al, H2O) | |
| 446 461 | 445 466 | 415 493 | 451 472 | 412 469 529 | ν2(SO4) |
| 613 | 618 | 621 671 | 597 | 612 | ν4(SO4) |
| 985 | 977 | 1008 | 1011 1032 | 992 | ν1(SO4) |
| 1061 1096 1145 | 1101 1139 | 1136 | 1183 | 1087 1127 | ν3(SO4) |
| 3297 3421 | 3240 3360 3426 | 3407 3495 | 3350 | 3252 | ν(H2O) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, H.; Ling, Z.; Qi, X.; Xin, Y.; Liu, C.; Cao, H. A Remote Raman System and Its Applications for Planetary Material Studies. Sensors 2021, 21, 6973. https://doi.org/10.3390/s21216973
Qu H, Ling Z, Qi X, Xin Y, Liu C, Cao H. A Remote Raman System and Its Applications for Planetary Material Studies. Sensors. 2021; 21(21):6973. https://doi.org/10.3390/s21216973
Chicago/Turabian StyleQu, Hongkun, Zongcheng Ling, Xiaobin Qi, Yanqing Xin, Changqing Liu, and Haijun Cao. 2021. "A Remote Raman System and Its Applications for Planetary Material Studies" Sensors 21, no. 21: 6973. https://doi.org/10.3390/s21216973
APA StyleQu, H., Ling, Z., Qi, X., Xin, Y., Liu, C., & Cao, H. (2021). A Remote Raman System and Its Applications for Planetary Material Studies. Sensors, 21(21), 6973. https://doi.org/10.3390/s21216973

