Wind Tunnel Testing of Plasma Actuator with Two Mesh Electrodes to Boundary Layer Control at High Angle of Attack †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xue, C.-J.; Han, Y.; Qi, W.-G.; Dai, J.-H. Landing-Gear Drop-Test Rig Development and Application for Light Airplanes. J. Aircr. 2012, 49, 2064–2076. [Google Scholar] [CrossRef]
- Pytka, J.; Budzyński, P.; Łyszczyk, T.; Józwik, J.; Michałowska, J.; Tofil, A.; Błażejczak, D.; Laskowski, J. Determining Wheel Forces and Moments on Aircraft Landing Gear with a Dynamometer Sensor. Sensors 2019, 20, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pytka, J.; Józwik, J.; Budzyński, P.; Łyszczyk, T.; Tofil, A.; Gnapowski, E.; Laskowski, J. Wheel Dynamometer System for Aircraft Landing Gear Testing. Measurement 2019, 148, 106918. [Google Scholar] [CrossRef]
- Zhou, Y.; Yunxia, C.; Rui, K. A Study of Aircraft Landing Gear Testing System on PHM. In Proceedings of the Prognostics and System Health Managment Conference, Montreal, QC, Canada, 25–29 September 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Ninian, D.; Dakka, S.M. Design, Development and Testing of Shape Shifting Wing Model. Aerospace 2017, 4, 52. [Google Scholar] [CrossRef] [Green Version]
- Gerard, I.J. Mechanical Tests of Aircraft Structural Components. J. R. Aeronaut. Soc. 1932, 36, 673–703. [Google Scholar] [CrossRef]
- Gnapowski, E.; Pytka, J.; Jozwik, J.; Michalowska, J. Wind Tunnel Testing of Mesh Electrodes Plasma Actuator. In Proceedings of the 7th IEEE Workshop on Metrology for AeroSpace, Pisa, Italy, 22–24 June 2020; pp. 426–429. [Google Scholar]
- Whalley, R.D.; Choi, K.S. The Starting Vortex in Quiescent Air Induced by Dielectric-Barrier-Discharge Plasma. J. Fluid Mech. 2012, 703, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M. A History of the Electric Wind. Am. J. Phys. 1962, 30, 366–372. [Google Scholar] [CrossRef]
- Messanelli, F.; Belan, M. Ionic Wind Measurements on Multi-Tip Plasma Actuators. EPJ Web Conf. 2016, 114, 2073. [Google Scholar] [CrossRef] [Green Version]
- Séraudie, A.; Aubert, E.; Naudé, N.; Cambronne, J. Effect of Plasma Actuators on a Flat Plate Laminar Boundary Layer in Subsonic Conditions. In Proceedings of the 3rd AIAA Flow Control Conference, San Francisco, CA, USA, 5–8 June 2006. [Google Scholar]
- Wang, C.-C.; Durscher, R.; Roy, S. Three-Dimensional Effects of Curved Plasma Actuators in Quiescent Air. J. Appl. Phys. 2011, 109, 083305. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Wang, C.C. Bulk Flow Modification with Horseshoe and Serpentine Plasma Actuators. J. Phys. D Appl. Phys. 2009, 42. [Google Scholar] [CrossRef]
- Berendt, A.; Podliński, J.; Mizeraczyk, J. Multi DBD Plasma Actuator for Flow Separation Control around NACA0012 and NACA0015 Airfoil Models. Przegląd Elektrotechniczny 2012, 88, 18–21. [Google Scholar]
- Leroy, P.; Audier, J.; Podlinski, A.; Berendt, D.H.; Mizeraczyk, J. Enhancement of Lift and Drag Performances of NACA0012 Airfoil by Multi-DBD Plasma Actuator with Additional Floating Interelectrodes. In Proceedings of the International Symposium on Electrohydrodynamics, Gdańsk, Poland, 23–26 September 2012. [Google Scholar]
- Gnapowski, E. Effect of Mesh Electrodes Geometry on the Ozone Concentration in the Presence of Micanite Dielectric. Adv. Sci. Technol. Res. J. 2018, 12, 76–80. [Google Scholar] [CrossRef]
- Kogelschatz, U.; Eliasson, B.; Egli, W. From Ozone Generators to at Television Screens: History and Future Potential of Dielectric-Barrier Discharges. Pure Appl. Chem. 1999, 71, 1819–1828. [Google Scholar] [CrossRef]
- Han, M.; Li, J.; Niu, Z.; Liang, H.; Zhao, G.; Hua, W.; Menghu, H.; Jun, L.; Zhongguo, N.; Hua, L.; et al. Aerodynamic performance enhancement of a flying wing using nanosecond pulsed DBD plasma actuator. Chin. J. Aeronaut. 2015, 28, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Gnapowski, E.; Gnapowski, S.; Pytka, J. Effect of Mesh Geometry on Power, Efficiency, and Homogeneity of Barrier Discharges in the Presence of Glass Dielectric. IEEE Trans. Plasma Sci. 2018, 46, 3493–3498. [Google Scholar] [CrossRef]
- Deng, X.T.; Kong, M.G. Frequency Range of Stable Dielectric-Barrier Discharges in Atmospheric He and N2. IEEE Trans. Plasma Sci. 2004, 32, 1709–1715. [Google Scholar] [CrossRef]
- Gnapowski, E.; Gnapowski, S. Changes in the Power Discharge in a Plasma Reactor Using Porous Versus Solid Dielectric Barriers and Meshes Electrodes. IEEE Trans. Plasma Sci. 2016, 44, 1–5. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.-J.; Lee, Y.-N.; Kim, I.T.; Cho, G. Discharge Characteristics and Plasma Erosion of Various Dielectric Materials in the Dielectric Barrier Discharges. Appl. Sci. 2018, 8, 1294. [Google Scholar] [CrossRef] [Green Version]
- Asada, K.; Ninomiya, Y.; Fujii, K.; Oyama, A. Airfoil Flow Experiment on the Duty Cycle of DBD Plasma Actuator. In Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Zhao, G.; Li, Y.; Liang, H.; Han, M.; Wu, Y. Flow Separation Control on Swept Wing with Nanosecond Pulse Driven DBD Plasma Actuators. Chin. J. Aeronaut. 2015, 28, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.P.; Ng, T.T.; Vasudevan, S.; Corke, T.C.; Post, M.L.; McLaughlin, T.E.; Suchomel, C.F. Scaling Effects of an Aerodynamic Plasma Actuator. J. Aircr. 2008, 45, 223–236. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.-H.; Yang, L.; Yan, H.-J.; Jin, Y.; Ren, C.-S. Plasma Actuator Performance Driven by Dual-Power Supply Voltage—AC High Voltage Superimposed with Pulse Bias Voltage. IEEE Trans. Plasma Sci. 2017, 45, 412–422. [Google Scholar] [CrossRef]
- Dong, D.; Hong, J.; Pouvesle, V.; Boucinha, W.R.; Leroy, A. Study of a DBD Plasma Actuator Dedicated to Airflow Separation Control. In Proceedings of the IEEE 35th International Conference on Plasma Science, Karlsruhe, Germany, 15–19 June 2008; p. 1. [Google Scholar]
- Huang, J.; Corke, T.C.; Thomas, F.O. Plasma Actuators for Separation Control of Low-Pressure Turbine Blades. AIAA J. 2012; 44, 51–57. [Google Scholar]
- Nishida, H.; Shiraishi, T. Experimental Characterization of Dual-Grounded Tri-Electrode Plasma Actuator. AIAA J. 2015, 53, 3157–3166. [Google Scholar] [CrossRef]
- Gnapowski, E.; Gnapowski, S.; Pytka, J. The Impact of Dielectrics on the Electrical Capacity, Concentration, Efficiency Ozone Generation for the Plasma Reactor with Mesh Electrodes. Plasma Sci. Technol. 2018, 20, 085505. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Li, Q.; Zhu, D.; Attoui, M.; Deng, Z.; Tang, J.; Jiang, J. Comparison of Nanoparticle Generation by Two Plasma Techniques: Dielectric Barrier Discharge and Spark Discharge. Aerosol Sci. Technol. 2017, 51, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Cuong, L.C.; Nghi, N.H.; Dieu, T.V.; Oanh, D.T.Y.; Vuong, D.D. Influence of Oxygen Concentration, Feed Gas Flow Rate and Air Humidity on the Output of Ozone Produced by Corona Discharge. Vietnam. J. Chem. 2019, 57, 604–608. [Google Scholar] [CrossRef]
- Vaduganathan, L.; Poonamallie, B.A.; Nagalingam, M. Effects of Temperature and Flow Rates of Ozone Generator on the DBD by Varying Various Electrical Parameters. Am. J. Appl. Sci. 2012, 9, 1496–1502. [Google Scholar] [CrossRef] [Green Version]
- Prasetyaningrum, A.; Kusumaningtyas, D.A.; Suseno, P.; Ratnawati, R. Effect of pH and Gas Flow Rate on Ozone Mass Transfer of Κ-Carrageenan Solution in Bubble Column Reactor. Reakt. Chem. Eng. J. 2018, 18, 177–182. [Google Scholar] [CrossRef]
- Shimizu, K.; Mizuno, Y.; Blajan, M. Basic Study on Flow Control by Using Plasma Actuator. IEEE Ind. Appl. Soc. Annu. Meet. 2013, 51, 1–6. [Google Scholar] [CrossRef]
- Vorobiev, A.; Rennie, R.M.; Jumper, E.J. Lift Enhancement by Plasma Actuators at Low Reynolds Numbers. J. Aircr. 2013, 50, 12–19. [Google Scholar] [CrossRef]
V (m/s) | Normal Force (N) | Axial Force (N) | ||
---|---|---|---|---|
Plasma actuator | ||||
OFF | ON | OFF | ON | |
5 | 1.52 | 1.57 | 0.08 | 0.09 |
10 | 6.46 | 6.46 | 0.31 | 0.31 |
15 | 13.35 | 13.48 | 0.65 | 0.66 |
Measurement Uncertainty | ||||
---|---|---|---|---|
Normal Force (N) | Axial Force (N) | |||
Plasma actuator | ||||
V (m/s) | OFF | ON | OFF | ON |
5 | 0.007 | 0.013 | 0.002 | 0.006 |
10 | 0.003 | 0.007 | 0.002 | 0.006 |
15 | 0.083 | 0.075 | 0.004 | 0.008 |
V (m/s) | Lift Coefficient CL | |
---|---|---|
Plasma actuator OFF | Plasma actuator ON | |
5 | 1.57 | 1.62 |
10 | 1.61 | 1.62 |
15 | 3.42 | 3.44 |
V (m/s) | Resultant Force (N) | |
---|---|---|
Plasma actuator OFF | Plasma actuator ON | |
5 | 0.5 | 0.53 |
10 | 1.98 | 2 |
15 | 4.19 | 4.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnapowski, E.; Pytka, J.; Józwik, J.; Laskowski, J.; Michałowska, J. Wind Tunnel Testing of Plasma Actuator with Two Mesh Electrodes to Boundary Layer Control at High Angle of Attack. Sensors 2021, 21, 363. https://doi.org/10.3390/s21020363
Gnapowski E, Pytka J, Józwik J, Laskowski J, Michałowska J. Wind Tunnel Testing of Plasma Actuator with Two Mesh Electrodes to Boundary Layer Control at High Angle of Attack. Sensors. 2021; 21(2):363. https://doi.org/10.3390/s21020363
Chicago/Turabian StyleGnapowski, Ernest, Jarosław Pytka, Jerzy Józwik, Jan Laskowski, and Joanna Michałowska. 2021. "Wind Tunnel Testing of Plasma Actuator with Two Mesh Electrodes to Boundary Layer Control at High Angle of Attack" Sensors 21, no. 2: 363. https://doi.org/10.3390/s21020363
APA StyleGnapowski, E., Pytka, J., Józwik, J., Laskowski, J., & Michałowska, J. (2021). Wind Tunnel Testing of Plasma Actuator with Two Mesh Electrodes to Boundary Layer Control at High Angle of Attack. Sensors, 21(2), 363. https://doi.org/10.3390/s21020363