# Learning Carbohydrate Digestion and Insulin Absorption Curves Using Blood Glucose Level Prediction and Deep Learning Models

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. State of the Art

## 3. Materials and Methods

#### 3.1. Dataset Used

#### 3.2. Proposed Model

## 4. Experimental Results

#### 4.1. Software Configuration

#### 4.2. Numerical Results

#### 4.3. Using a Simple Model Results

^{−1}vs. 0.57 h

^{−1}). The quality of the generated absorption curve for the fast insulin is measured by computing the mean absolute error for the difference between the generated curve and the curve computed by the AIDA2 simulator. Table 4 captures a value of 0.088 for the single layer RNN model which is higher than the 0.077 value in Table 3 for the two-layer RNN model.

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Wei, S.; Zhao, X.; Miao, C. A comprehensive exploration to the machine learning techniques for diabetes identification. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 291–295. [Google Scholar]
- De Bois, M.; El Yacoubi, M.A.; Ammi, M. Study of Short-Term Personalized Glucose Predictive Models on Type-1 Diabetic Children. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Sun, Q.; Jankovic, M.V.; Bally, L.; Mougiakakou, S.G. Predicting blood glucose with an LSTM and Bi-LSTM based deep neural network. In Proceedings of the 2018 14th Symposium on Neural Networks and Applications (NEUREL), Belgrade, Servia, 20–21 November 2018; pp. 1–5. [Google Scholar]
- Ruan, Y.; Wilinska, M.E.; Thabit, H.; Hovorka, R. Modeling day-to-day variability of glucose–insulin regulation over 12-week home use of closed-loop insulin delivery. IEEE Trans. Biomed. Eng.
**2016**, 64, 1412–1419. [Google Scholar] [CrossRef] [PubMed] - Man, C.D.; Rizza, R.A.; Cobelli, C. Meal simulation model of the glucose-insulin system. Trans. Biomed. Eng.
**2007**, 54, 1740–1749. [Google Scholar] - Wilinska, M.; Chassin, L.; Schaller, H.; Schaupp, L.; Pieber, T.; Hovorka, R. Insulin Kinetics in Type-1 Diabetes: Continuous and Bolus Delivery of Rapid Acting Insulin. IEEE. Trans. Biomed. Eng.
**2005**, 52, 3–12. [Google Scholar] [CrossRef] [PubMed] - Roman, H.; Canonico, V.; Chassin, L.J.; Haueter, U.; Massi-Benedetti, M.; Federici, M.O.; Pieber, T.R.; Schaller, H.C.; Schaupp, L.; Vering, T.; et al. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas.
**2004**, 25, 905. [Google Scholar] - Hajizadeh, I.; Rashid, M.; Samadi, S.; Feng, J.; Sevil, M.; Hobbs, N.; Lazaro, C.; Maloney, Z.; Brandt, R.; Yu, X.; et al. Adaptive and personalized plasma insulin concentration estimation for artificial pancreas systems. J. Diabetes Sci. Technol.
**2018**, 12, 639–649. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Haiya, W.; LI, J.; Yang, K. Mathematical Modeling and Qualitative Analysis of Insulin Therapies. 2007. Available online: https://www.sciencedirect.com/science/article/pii/S0025556407001058 (accessed on 25 May 2021).
- Lehmann, E.D.; Deutsch, T. AIDA Technical Guide. Available online: http://www.2aida.org/aida/technical.htm (accessed on 4 May 2021).
- Guyton, J.R.; Foster, R.O.; Soeldner, J.S.; Tan, M.H.; Kahn, C.B.; Koncz, L.; Gleason, R.E. A model of glucose-insulin homeostasis in man that incorporates the heterogenous fast pool theory of pancreatic insulin release. Diabetes
**1978**, 27, 1027–1042. [Google Scholar] [CrossRef] [PubMed] - Lehmann, E.D. The freeware AIDA interactive educational diabetes simulator. Med. Sci. Monit.
**2001**, 7, 504–515. [Google Scholar] [PubMed] - Pappada, S.M.; Cameron, B.D.; Rosman, P.M. Development of a neural network for prediction of glucose concentration in type 1 diabetes patients. J. Diabetes Sci. Technol.
**2008**, 2, 792–801. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Plis, K.; Bunescu, R.; Marling, C.; Shubrook, J.; Schwartz, F. A machine learning approach to predicting blood glucose levels for diabetes management. In Proceedings of the Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–28 July 2014. [Google Scholar]
- Hamdi, T.; Ali, J.B.; Di Costanzo, V.; Fnaiech, F.; Moreau, E.; Ginoux, J.M. Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm. Biocybern. Biomed. Eng.
**2018**, 38, 362–372. [Google Scholar] [CrossRef] - Ali, J.B.; Hamdi, T.; Fnaiech, N.; Di Costanzo, V.; Fnaiech, F.; Ginoux, J.M. Continuous blood glucose level prediction of Type 1 Diabetes based on Artificial Neural Network. Biocybern. Biomed. Eng.
**2018**, 38, 828–840. [Google Scholar] - Naumova, V.; Pereverzyev, S.V.; Sivananthan, S. A meta-learning approach to the regularized learning—Case study: Blood glucose prediction. Neural Netw.
**2012**, 33, 181–193. [Google Scholar] [CrossRef] [Green Version] - Fox, I.; Ang, L.; Jaiswal, M.; Pop-Busui, R.; Wiens, J. Deep multi-output forecasting: Learning to accurately predict blood glucose trajectories. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1387–1395. [Google Scholar]
- Mhaskar, H.N.; Pereverzyev, S.V.; van der Walt, M.D. A deep learning approach to diabetic blood glucose prediction. Front. Appl. Math. Stat.
**2017**, 3, 14. [Google Scholar] [CrossRef] [Green Version] - Robertson, G.; Lehmann, E.D.; Sandham, W.; Hamilton, D. Blood glucose prediction using artificial neural networks trained with the AIDA diabetes simulator: A proof-of-concept pilot study. J. Electr. Comput. Eng.
**2011**. [Google Scholar] [CrossRef] - Munoz-Organero, M. Deep Physiological Model for Blood Glucose Prediction in T1DM Patients. Sensors
**2020**, 20, 3896. [Google Scholar] [CrossRef] - Matthews, D.R.; Rudenski, A.S.; Burnett, M.A.; Darling, P.; Turner, R.C. The half-life of endogenous insulin and C-peptide in man assessed by somatostatin suppression. Clin. Endocrinol.
**1985**, 23, 71–79. [Google Scholar] [CrossRef] [PubMed] - Baeck, T.; Fogel, D.B.; Michalewicz, Z. Evolutionary Computation 1: Basic Algorithms and Operators; Institute of Physics Publishing: Bristol, UK; Philadelphia, PA, USA, 2000. [Google Scholar]
- The DEAP Project. DEAP Documentation. Available online: https://deap.readthedocs.io/en/master/ (accessed on 5 May 2021).
- The Keras Team. The Keras Deep Learning Library. Available online: https://keras.io/ (accessed on 5 May 2021).

**Figure 6.**Mean, min, and max prediction errors for the individuals computed at each epoch by the genetic algorithm for one patient generated by the AIDA2 simulator.

**Figure 9.**Mean, min, and max prediction errors for the individuals computed at each epoch by the genetic algorithm for the same patient in Figure 5 generated by the AIDA2 simulator.

Parameter | Value |
---|---|

Number of simulated patients | 40 |

Number of days per patient | 8 |

Average number of insulin boluses per day | 4 |

Average number of meals per day | 6 |

Layer (Type) | Output Shape | #Param |
---|---|---|

lstm_1 (LSTM) | (None, 16, 10) | 600 |

dropout (Dropout) | (None, 16, 10) | 0 |

lstm_2 (LSTM) | (None, 5) | 320 |

dropout_1 (Dropout) | (None, 5) | 0 |

dense (Dense) | (None, 3) | 18 |

dense_1 (Dense) | (None, 1) | 4 |

Parameter | Value |
---|---|

Mean peak time (h) | 1.52 |

Mean decay rate (h^{−1}) | 0.57 |

Mean absolute error | 0.078 |

Parameter | Value |
---|---|

Mean peak time (h) | 1.65 |

Mean decay rate (h^{−1}) | 0.77 |

Mean absolute error | 0.088 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Muñoz-Organero, M.; Queipo-Álvarez, P.; García Gutiérrez, B.
Learning Carbohydrate Digestion and Insulin Absorption Curves Using Blood Glucose Level Prediction and Deep Learning Models. *Sensors* **2021**, *21*, 4926.
https://doi.org/10.3390/s21144926

**AMA Style**

Muñoz-Organero M, Queipo-Álvarez P, García Gutiérrez B.
Learning Carbohydrate Digestion and Insulin Absorption Curves Using Blood Glucose Level Prediction and Deep Learning Models. *Sensors*. 2021; 21(14):4926.
https://doi.org/10.3390/s21144926

**Chicago/Turabian Style**

Muñoz-Organero, Mario, Paula Queipo-Álvarez, and Boni García Gutiérrez.
2021. "Learning Carbohydrate Digestion and Insulin Absorption Curves Using Blood Glucose Level Prediction and Deep Learning Models" *Sensors* 21, no. 14: 4926.
https://doi.org/10.3390/s21144926