Classification of Motor Imagery Electroencephalography Signals Based on Image Processing Method
Abstract
:1. Introduction
2. Materials
2.1. Datasets
2.2. Signal Preprocessing
3. Methods
3.1. Enhanced Feature Differences
3.2. Framework Construction
3.3. Evaluation Method
4. Results and Discussion
4.1. Results
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolpaw, J.; Mcfarland, D.; Vaughan, T.; Schalk, G. The Wadsworth Center brain-computer interface (BCI) research and development program. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Wolpaw, J.; Birbaumer, N.; Mcfarland, D.; Pfurtscheller, G.; Vaughan, T. Brain-computer interfaces for communication and control. Suppl. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Lance, B.; Kerick, S.; Ries, A.; Oie, K.; Mcdowell, K. Brain Computer Interface Technologies in the Coming Decades. Proc. IEEE 2012, 100, 1585–1599. [Google Scholar] [CrossRef]
- Perdikis, S.; Millan, J. Brain-Machine Interfaces: A Tale of Two Learners. IEEE Syst. Man Cybern. Mag. 2020, 6, 12–19. [Google Scholar] [CrossRef]
- Kumar, S.; Yger, F.; Lotte, F. Towards Adaptive Classification using Riemannian Geometry approaches in Brain-Computer Interfaces. In Proceedings of the 2019 7th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Korea, 18–20 February 2019. [Google Scholar]
- Silva, G. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 1999, 110, 1842–1857. [Google Scholar]
- Tang, Z.; Sun, S.; Zhang, S.; Chen, Y.; Chen, S. A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control. Sensors 2016, 16, 2050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller-Gerking, J.; Pfurtscheller, G.; Flyvbjerg, H. Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 1999, 110, 787–798. [Google Scholar] [CrossRef]
- Kai, K.; Zhang, Y.; Zhang, H.; Guan, C. Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface. In Proceedings of the IEEE International Joint Conference on Neural Networks, Hong Kong, China, 1–8 June 2008. [Google Scholar]
- Tabar, Y.; Halici, U. A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 2017, 14, 016003. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Zhang, L.; Song, A.; Wu, C.; Li, W.; Zhang, D. Wavelet Transform Time-Frequency Image and Convolutional Network based Motor Imagery EEG Classification. IEEE Access 2018, 7, 6084–6093. [Google Scholar] [CrossRef]
- Ping, W.; Jiang, A.; Liu, X.; Jing, S.; Li, Z. LSTM-Based EEG Classification in Motor Imagery Tasks. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 7, 2086–2095. [Google Scholar]
- Yang, J.; Ma, Z.; Wang, J.; Fu, Y. A Novel Deep Learning Scheme for Motor Imagery EEG Decoding Based on Spatial Representation Fusion. IEEE Access 2020, 8, 202100–202110. [Google Scholar] [CrossRef]
- Ha, K.; Jeong, J. Motor Imagery EEG Classification Using Capsule Networks. Sensors 2019, 19, 2854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leeb, R.; Lee, F.; Keinrath, C.; Scherer, R.; Bischof, H.; Pfurtscheller, G. Correction to “Brain–Computer Communication: Motivation, Aim, and Impact of Exploring a Virtual Apartment”. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 473–482. [Google Scholar] [CrossRef]
- Schlögl, A. Outcome of the BCI-Competition 2003 on the Graz Data Set. 2003. Available online: http://www.bbci.de/competition/ii/#datasets (accessed on 16 May 2021).
- Pfurtscheller, G.; Brunner, C.; Schlögl, A.; Silva, F. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 2006, 31, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Park, J.; Lee, J.; Kweon, I. CBAM: Convolutional Block Attention Module; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Ahn, M.; Jun, S. Performance variation in motor imagery brain–computer interface: A brief review. J. Neurosci. Methods 2015, 243, 103. [Google Scholar] [CrossRef] [PubMed]
- Szachewicz, P. Classification of Motor Imagery for Brain-Computer Interfaces. Master’s Thesis, Poznan University of Technology, Poznań, Poland, 2013. [Google Scholar]
- Soman, S. High performance EEG signal classification using classifiability and the Twin SVM. Appl. Soft Comput. 2015, 30, 305–318. [Google Scholar] [CrossRef]
- Keng, A.; Yang, C.; Wang, C.; Guan, C.; Zhang, H. Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b. Front. Neurosci. 2012, 6, 39. [Google Scholar]
- Lemm, S.; Schäfer, C.; Curio, G. BCI Competition 2003-Data set III: Probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements. IEEE Trans. Biomed. Eng. 2004, 51, 1077–1080. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wu, Y. Convolutional deep belief networks for feature extraction of EEG signal. In Proceedings of the International Joint Conference on Neural Networks, Beijing, China, 6–11 July 2014; pp. 2850–2853. [Google Scholar]
Subjects | CapsNet | BP-SVM | CNN-SAE | IS-CBAM-CNN |
---|---|---|---|---|
1 | 78.8 | 65.4 ± 4.7 | 76.0 ± 2.7 | 80.3 ± 1.5 |
2 | 55.7 | 58.5 ± 4.3 | 65.8 ± 1.9 | 75.0 ± 1.8 |
3 | 55.0 | 64.4 ± 5.9 | 75.3 ± 1.8 | 67.7 ± 2.6 |
4 | 95.9 | 92.7 ± 4.6 | 95.3 ± 0.4 | 95.4 ± 0.6 |
5 | 83.1 | 77.1 ± 6.6 | 83.0 ± 1.4 | 88.3 ± 1.5 |
6 | 83.4 | 71.4 ± 6.8 | 79.5 ± 2.5 | 80.0 ± 1.7 |
7 | 75.6 | 68.4 ± 7.6 | 74.5 ± 1.8 | 73.7 ± 2.2 |
8 | 91.2 | 68.8 ± 5.9 | 75.3 ± 2.6 | 77.4 ± 2.0 |
9 | 87.1 | 65.9 ± 6.1 | 73.3 ± 3.6 | 78.6 ± 2.1 |
Average | 78.4 | 70.2 ± 5.8 | 77.6 ± 2.1 | 79.6 ± 1.8 |
Subjects | Twin-SVM | FBCSP | CNN-SAE | IS-CBAM-CNN |
---|---|---|---|---|
1 | 0.494 | 0.546 ± 0.017 | 0.517 ± 0.095 | 0.606 ± 0.030 |
2 | 0.416 | 0.208 ± 0.028 | 0.324 ± 0.065 | 0.500 ± 0.036 |
3 | 0.322 | 0.244 ± 0.023 | 0.494 ± 0.084 | 0.354 ± 0.052 |
4 | 0.897 | 0.888 ± 0.003 | 0.905 ± 0.017 | 0.908 ± 0.012 |
5 | 0.722 | 0.692 ± 0.005 | 0.655 ± 0.060 | 0.766 ± 0.030 |
6 | 0.405 | 0.534 ± 0.012 | 0.579 ± 0.099 | 0.600 ± 0.034 |
7 | 0.466 | 0.409 ± 0.013 | 0.488 ± 0.065 | 0.474 ± 0.044 |
8 | 0.477 | 0.413 ± 0.013 | 0.494 ± 0.106 | 0.548 ± 0.040 |
9 | 0.503 | 0.583 ± 0.010 | 0.463 ± 0.152 | 0.572 ± 0.042 |
Average | 0.526 | 0.502 ± 0.014 | 0.547 ± 0.083 | 0.592 ± 0.036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Wang, Y.; Song, Z. Classification of Motor Imagery Electroencephalography Signals Based on Image Processing Method. Sensors 2021, 21, 4646. https://doi.org/10.3390/s21144646
Chen Z, Wang Y, Song Z. Classification of Motor Imagery Electroencephalography Signals Based on Image Processing Method. Sensors. 2021; 21(14):4646. https://doi.org/10.3390/s21144646
Chicago/Turabian StyleChen, Zhongye, Yijun Wang, and Zhongyan Song. 2021. "Classification of Motor Imagery Electroencephalography Signals Based on Image Processing Method" Sensors 21, no. 14: 4646. https://doi.org/10.3390/s21144646
APA StyleChen, Z., Wang, Y., & Song, Z. (2021). Classification of Motor Imagery Electroencephalography Signals Based on Image Processing Method. Sensors, 21(14), 4646. https://doi.org/10.3390/s21144646