Traffic Sign Recognition Evaluation for Senior Adults Using EEG Signals
Abstract
:1. Introduction
2. Related Work
3. Methods
4. Result
4.1. The Result of Go/Nogo Test
4.2. Analysis of ERP Component Time
4.3. The Classification Results of Machine Learning
4.4. The Classification Results of Deep Learning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haegerstrom-Portnoy, G.; Schneck, M.E.; Brabyn, J.A. Seeing into old age: Vision function beyond acuity. Optom. Vis. Sci. 1999, 76, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Owsley, C. Driving mobility, older adults, and quality of life. Gerontechnology 2002, 2, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Hakamies-Blomqvist, L.; Siren, A.; Davidse, R. Older Drivers-a Review; VTI Rapport 497A; Swedish National Road and Transport Research Institute: Linköping Sweden, 2004. [Google Scholar]
- Fujikake, K.; Hasegawa, S.; Omori, M.; Takada, H.; Miyao, M. Readability of character size for car navigation systems. In Symposium on Human Interface and the Management of Information; Springer: Berlin/Heidelberg, Germany, 2007; pp. 503–509. [Google Scholar]
- Davidse, R.J. Older drivers and adas: Which systems improve road safety? IATSS Res. 2006, 30, 6–20. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.Y.; Huang, Y.S. A survey of traffic sign recognition. In Proceedings of the 2010 International Conference on Wavelet Analysis and Pattern Recognition, Qingdao, China, 11–14 July 2010; pp. 119–124. [Google Scholar]
- Allen, R.W.; Parseghian, Z.; Van Valkenburgh, P.G. A simulator evaluation of age effects on symbol sign recognition. In Proceedings of the Human Factors Society Annual Meeting, Blacksburg, VA, USA, 1 October 1980; SAGE Publications Sage CA: Los Angeles, CA, USA, 1980; Volume 24, pp. 471–475. [Google Scholar]
- Preusser, D.F.; Williams, A.F.; Ferguson, S.A.; Ulmer, R.G.; Weinstein, H.B. Fatal crash risk for older drivers at intersections. Accid. Anal. Prev. 1998, 30, 151–159. [Google Scholar] [CrossRef]
- Liu, Y.-C. Effects of using head-up display in automobile context on attention demand and driving performance. Displays 2003, 24, 157–165. [Google Scholar] [CrossRef]
- Halpern, D.F. Age differences in response time to verbal and symbolic traffic signs. Exp. Aging Res. 1984, 10, 201–204. [Google Scholar] [CrossRef]
- Holzinger, A.; Searle, G.; Auinger, A.; Ziefle, M. Informatics as semiotics engineering: Lessons learned from design, development and evaluation of ambient assisted living applications for elderly people. In Proceedings of the International Conference on Universal Access in Human-Computer Interaction, Orlando, FL, USA, 9–14 July 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 183–192. [Google Scholar]
- Sha, C.; Li, R.; Chang, K. Color affects the usability of smart phone icon for the elderly. In Proceedings of the International Conference on Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management, Vancouver, CB, Canada, 9–14 July 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 173–182. [Google Scholar]
- Chae, S. A study on the relationships between drivers’ emotions and brain signals. In Proceedings of the International Conference on Human-Computer Interaction, Los Angeles, CA, USA, 2–7 August 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 468–476. [Google Scholar]
- Ito, T.; Shino, T.; Kamata, M. Information sharing to improve understanding of proactive braking intervention for elderly drivers. Int. J. Intell. Transp. Syst. Res. 2018, 16, 173–186. [Google Scholar] [CrossRef]
- Luck, S.J. An Introduction to the Event-Related Potential Technique; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Van Dinteren, R.; Arns, M.; Jongsma, M.L.; Kessels, R.P. P300 development across the lifespan: A systematic review and meta-analysis. PLoS ONE 2014, 9, e87347. [Google Scholar] [CrossRef]
- Goodin, D.S.; Squires, K.C.; Henderson, B.H.; Starr, A. Age-related variations in evoked potentials to auditory stimuli in normal human subjects. Electroencephalogr. Clin. Neurophysiol. 1978, 44, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Polich, J. Meta-analysis of p300 normative aging studies. Psychophysiology 1996, 33, 334–353. [Google Scholar] [CrossRef]
- Angel, L.; Fay, S.; Bouazzaoui, B.; Baudouin, A.; Isingrini, M. Protective role of educational level on episodic memory aging: An event-related potential study. Brain Cogn. 2010, 74, 312–323. [Google Scholar] [CrossRef]
- Demiralp, T.; Ademoglu, A.; Schürmann, M.; Basar-Eroglu, C.; Basar, E. Detection of p300 waves in single trials by the wavelet transform(WT). Brain Lang. 1999, 66, 108–128. [Google Scholar] [CrossRef] [Green Version]
- Lenhardt, A.; Kaper, M.; Ritter, H.J. An adaptive p300-based online brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 121–130. [Google Scholar] [CrossRef]
- Thulasidas, M.; Guan, C.; Wu, J. Robust classification of eeg signal for brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, 24–29. [Google Scholar] [CrossRef]
- Zhang, H.; Guan, C.; Wang, C. P300-based brain-computer interfaces: A computational approach with statistical models. IEEE Trans. Biomed. Eng. 2008, 55, 1754–1763. [Google Scholar] [CrossRef]
- Iverson, G.L. Go/no-go testing. In Encyclopedia of Clinical Neuropsychology; Springer: New York, NY, USA, 2011; pp. 1162–1163. [Google Scholar]
- Liu, B.; Wang, Z.; Song, G.; Wu, G. Cognitive processing of traffic signs in immersive virtual reality environment: An erp study. Neurosci. Lett. 2010, 485, 43–48. [Google Scholar] [CrossRef]
- Patel, S.H.; Azzam, P.N. Characterization of N200 and P300: Selected Studies of the Event-Related Potential. Int. J. Med. Sci. 2005, 2, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Gajewski, P.D.; Stoerig, P.; Falkenstein, M. Erp—Correlates of response selection in a response conflict paradigm. Brain Res. 2008, 1189, 127–134. [Google Scholar] [CrossRef]
- Folstein, J.R.; Van Petten, C. Influence of cognitive control and mismatch on the n2 component of the erp: A review. Psychophysiology 2008, 45, 152–170. [Google Scholar] [CrossRef] [Green Version]
- Polich, J. Detection of Change: Event-Related Potential and fMRI Findings; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Federmeier, K.D.; Kutas, M. Meaning and modality: Influences of context, semantic memory organization, and perceptual predictability on picture processing. J. Exp. Psychol. Learn. Mem. Cogn. 2001, 27, 202. [Google Scholar] [CrossRef]
- Daltrozzo, J.; Schön, D. Conceptual processing in music as revealed by n400 effects on words and musical targets. J. Cogn. Neurosci. 2009, 21, 1882–1892. [Google Scholar] [CrossRef]
- Hajra, S.G.; Liu, C.C.; Song, X.; Fickling, S.D.; Cheung, T.P.; D’Arcy, R.C. Accessing knowledge of the ‘here and now’: A new technique for capturing electromagnetic markers of orientation processing. J. Neural Eng. 2018, 16, 016008. [Google Scholar] [CrossRef]
- Gouvea, A.C.; Phillips, C.; Kazanina, N.; Poeppel, D. The linguistic processes underlying the p600. Lang. Cogn. Process. 2010, 25, 149–188. [Google Scholar] [CrossRef]
- Patel, A.D.; Gibson, E.; Ratner, J.; Besson, M.; Holcomb, P.J. Processing syntactic relations in language and music: An event-related potential study. J. Cogn. Neurosci. 1998, 10, 717–733. [Google Scholar] [CrossRef]
- The Free Encyclopedia Wikipedia. Cross-Validation (Statistics). Available online: https://en.wikipedia.org/wiki/Cross-validation_(statistics) (accessed on 4 July 2021).
Variables | Elderly Group n = 10 | Young Group n = 10 | T Statistic | p-Value |
---|---|---|---|---|
M (SD) | M (SD) | |||
Demographics Age (years) | 66.2 (5.02) | 22.7 (2.87) | 22.59 | 0.0001 |
Group | Shape of Traffic Sign | Correct Answer | Incorrect Answer | Error Rate | ||
---|---|---|---|---|---|---|
AVG | SD | AVG | SD | |||
Elderly | Triangle | 15.2 | 2.68 | 5 | 3.38 | 24.1% |
Circle | 16.7 | 2.83 | 3.7 | 1.95 | 18.5% | |
Rectangle | 15.9 | 1.97 | 3.9 | 1.51 | 19.8% | |
AVG | 15.93 | 1.48 | 4.2 | 2.28 | 20.8% | |
Youth | Triangle | 17.1 | 1.37 | 2.4 | 0.8 | 12.4% |
Circle | 16.5 | 1.80 | 3.2 | 1.6 | 16.2% | |
Rectangle | 16.8 | 1.25 | 3.1 | 1.6 | 15.3% | |
AVG | 16.8 | 1.48 | 2.9 | 1.35 | 14.6% |
Group | Shape of Traffic Sign | ERP Components Time(ms) | |||||||
---|---|---|---|---|---|---|---|---|---|
Correct Answer | Incorrect Answer | ||||||||
N200 | P300 | N400 | P600 | N200 | P300 | N400 | P600 | ||
Elderly | Triangle | 249 | 406 | 498 | 634 | 248 | 414 | 510 | 625 |
Circle | 241 | 376 | 490 | 668 | 232 | 420 | 517 | 618 | |
Rectangle | 218 | 411 | 539 | 618 | 265 | 447 | 541 | 642 | |
AVG | 236 | 398 | 509 | 640 | 248 | 427 | 523 | 628 | |
STD | 13.13 | 15.48 | 21.21 | 20.82 | 13.64 | 14.61 | 13.20 | 10.07 | |
Youth | Triangle | 222 | 432 | 535 | 610 | 254 | 427 | 487 | 639 |
Circle | 203 | 356 | 480 | 595 | 236 | 403 | 479 | 617 | |
Rectangle | 234 | 400 | 505 | 672 | 266 | 453 | 534 | 681 | |
AVG | 220 | 396 | 507 | 626 | 252 | 427 | 500 | 646 | |
STD | 12.55 | 31.08 | 22.65 | 33.27 | 12.50 | 20.44 | 24.56 | 26.80 |
Signal Processing Types | Subjects’ Log–Likelihood Difference Value (|Correct|–|Incorrect|) | |||
---|---|---|---|---|
Elderly | Youth | |||
AVG | STD | AVG | STD | |
Averaged original signal | −19.1 | 4.6 | −183.6 | 17.7 |
Smoothing | −19.6 | 0.7 | −176.1 | 5.5 |
Zero-phase filtering | −345.1 | 142.2 | −124.4 | 23.6 |
Zero-phase filtering and smoothing | −695.8 | 92.7 | −75.1 | 1.4 |
Group | Signal Processing Types | Validation Accuracy | |||||
---|---|---|---|---|---|---|---|
4-Fold Cross Validation | AVG | STD | |||||
1 | 2 | 3 | 4 | ||||
Elderly | Averaged original signal | 0.40 | 0.33 | 0.60 | 0.71 | 0.55 | 0.15 |
Smoothing | 0.53 | 0.80 | 0.87 | 0.64 | 0.75 | 0.13 | |
Zero-phase filtering | 0.60 | 0.53 | 0.67 | 0.36 | 0.54 | 0.12 | |
Zero-phase filtering and smoothing | 0.53 | 0.47 | 0.53 | 0.64 | 0.54 | 0.06 | |
Youth | Averaged original signal | 0.67 | 0.60 | 0.47 | 0.64 | 0.59 | 0.08 |
Smoothing | 0.53 | 0.47 | 0.47 | 0.50 | 0.49 | 0.03 | |
Zero-phase filtering | 0.33 | 0.67 | 0.60 | 0.50 | 0.53 | 0.13 | |
Zero-phase filtering and smoothing | 0.73 | 0.47 | 0.47 | 0.86 | 0.63 | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koh, D.-W.; Kwon, J.-K.; Lee, S.-G. Traffic Sign Recognition Evaluation for Senior Adults Using EEG Signals. Sensors 2021, 21, 4607. https://doi.org/10.3390/s21134607
Koh D-W, Kwon J-K, Lee S-G. Traffic Sign Recognition Evaluation for Senior Adults Using EEG Signals. Sensors. 2021; 21(13):4607. https://doi.org/10.3390/s21134607
Chicago/Turabian StyleKoh, Dong-Woo, Jin-Kook Kwon, and Sang-Goog Lee. 2021. "Traffic Sign Recognition Evaluation for Senior Adults Using EEG Signals" Sensors 21, no. 13: 4607. https://doi.org/10.3390/s21134607
APA StyleKoh, D.-W., Kwon, J.-K., & Lee, S.-G. (2021). Traffic Sign Recognition Evaluation for Senior Adults Using EEG Signals. Sensors, 21(13), 4607. https://doi.org/10.3390/s21134607