Regulatory and Technical Constraints: An Overview of the Technical Possibilities and Regulatory Limitations of Vehicle Telematic Data
Abstract
:1. Introduction
2. Technical Limitations
3. Current and Future Legal Constraints
4. Case Studies
4.1. Insurance
4.2. Infotainment and Third-Party Services
4.3. Energy Reduction Schemes
5. Discussion
5.1. Insurance
5.2. Third Party Services
5.3. Energy Reduction Schemes
5.4. Communication & Latency
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3GPP | Third Generation Partnership Project |
ADAS | Advanced Driver Assistance Systems |
C-V2X | Cellular-Vehicle-to-Everything |
DSRC | Dedicated Short-Range Communication |
EDPB | European Data Protection Board |
ECM | Equivalent Circuit Model |
EIM | Electrochemical Impedance Model |
EM | Electrochemical Model |
EV | Electric Vehicle |
GDPR | General Data Protection Regulation |
GHG | Green House Gas |
ISP | Internet Service Provider |
IWGDPT | International Working Group on Data Protection in Telecommunications |
LTE-V2X | Long Term Evolution-Vehicle-to-Everything |
OEM | Original Equipment Manufacturer |
OJEU | Official Journal of the European Union |
SOC | State of charge |
SOH | State of Health |
UBI | Usage Based Insurance |
V2I | Vehicle-to-Infrastructure |
V2V | Vehicle-to-Vehicle |
V2X | Vehicle-to-Everything |
References
- European Data Protection Board. Guidelines 1/2020on Processing Personal Data in the Context of Connected Vehicles and Mobility Related Applications; EDPB: Brussels, Belgium, 2020. [Google Scholar]
- International Working Group on Data Protection in Telecommunications Connected Vehicles. Available online: https://www.datenschutz-berlin.de/fileadmin/user_upload/pdf/publikationen/working-paper/2018/2018-IWGDPT-Working_Paper_Connected_Vehicles.pdf (accessed on 17 May 2021).
- Xu, W.; Zhou, H.; Cheng, N.; Lyu, F.; Shi, W.; Chen, J.; Shen, X. Internet of vehicles in big data era. IEEE/CAA J. Autom. Sin. 2018, 5, 19–35. [Google Scholar] [CrossRef]
- Castignani, G.; Frank, R.; Engel, T. Driver behavior profiling using smartphones. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9 October 2013; pp. 552–557. [Google Scholar]
- Handel, P.; Skog, I.; Wahlstrom, J.; Bonawiede, F.; Welch, R.; Ohlsson, J.; Ohlsson, M. Insurance Telematics: Opportunities and Challenges with the Smartphone Solution. IEEE Intell. Transp. Syst. Mag. 2014, 6, 57–70. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, J.; Zhu, Y.; Chen, Y.; Li, M. D3: Abnormal driving behaviors detection and identification using smartphone sensors. In Proceedings of the 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Seattle, WA, USA, 22–25 June 2015; pp. 524–532. [Google Scholar]
- Siami, M.; Naderpour, M.; Lu, J. A Mobile Telematics Pattern Recognition Framework for Driving Behavior Extraction. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1459–1472. [Google Scholar] [CrossRef]
- Wahlstrom, J.; Skog, I.; Handel, P. Smartphone-Based Vehicle Telematics: A Ten-Year Anniversary. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2802–2825. [Google Scholar] [CrossRef] [Green Version]
- Karapiperis, D.; Birnbaum, B.; Brandenburg, A.; Castagna, S.; Greenberg, A.; Harbage, R.; Obersteadt, A. Usage-Based Insurance and Vehicle Telematics: Insurance Market and Regulatory Implications; CIPR Study Series; CIPR: Kansas City, MO, USA, 2015; 86p. [Google Scholar]
- Zhao, Y. Telematics: Safe and fun driving. IEEE Intell. Syst. 2002, 17, 10–14. [Google Scholar] [CrossRef]
- Siegel, J.E.; Erb, D.C.; Sarma, S.E. A Survey of the Connected Vehicle Landscape—Architectures, Enabling Technologies, Applications, and Development Areas. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2391–2406. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xie, Z.; Sun, J.; Zou, X.; Wang, J. A Cascaded R-CNN With Multiscale Attention and Imbalanced Samples for Traffic Sign Detection. IEEE Access 2020, 8, 29742–29754. [Google Scholar] [CrossRef]
- European Commission. A European Strategy on Cooperative Intelligent Transport Systems, a Milestone towards Cooperative, Connected and Automated Mobility; European Comission: Brussels, Belgium, 2016. [Google Scholar]
- European Parliament. A European Strategy on Cooperative Intelligent Transport Systems; European Parliament: Brussels, Belgium, 2018. [Google Scholar]
- Council of the European Union. REGULATION (EU) 2019/2144. Off. J. Eur. Union 2019, 2019/2144, 40. [Google Scholar]
- Ziebinski, A.; Cupek, R.; Grzechca, D.; Chruszczyk, L. Review of Advanced Driver Assistance Systems (ADAS); AIP Publishing: Collage Park, MD, USA, 2017; p. 120002. [Google Scholar]
- Sharma, S.; Kaushik, B. A survey on internet of vehicles: Applications, security issues & solutions. Veh. Commun. 2019, 20, 100182. [Google Scholar] [CrossRef]
- Wang, J.; Shao, Y.; Ge, Y.; Yu, R. A Survey of Vehicle to Everything (V2X) Testing. Sensors 2019, 19, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, F.M.; Sammarco, M.; Costa, L.H.M.K.; Detyniecki, M. Vehicle Telematics Via Exteroceptive Sensors: A Survey. arXiv 2008, arXiv:2008.12632. [Google Scholar]
- Yu, Z.; Jin, D.; Song, X.; Zhai, C.; Wang, D. Internet of Vehicle Empowered Mobile Media Scenarios: In-Vehicle Infotainment Solutions for the Mobility as a Service (MaaS). Sustainability 2020, 12, 7448. [Google Scholar] [CrossRef]
- Mourad, A.; Muhammad, S.; Al Kalaa, M.O.; Refai, H.H.; Hoeher, P.A. On the performance of WLAN and Bluetooth for in-car infotainment systems. Veh. Commun. 2017, 10, 1–12. [Google Scholar] [CrossRef]
- Choi, D.-K.; Jung, J.-H.; Koh, S.-J.; Kim, J.-I.; Park, J. In-Vehicle Infotainment Management System in Internet-of-Things Networks. In Proceedings of the 2019 International Conference on Information Networking (ICOIN), Kuala Lumpur, Malaysia, 9–11 January 2019; pp. 88–92. [Google Scholar]
- Jaisingh, K.; El-Khatib, K.; Akalu, R. Paving the Way for Intelligent Transport Systems (ITS): Privacy Implications of Vehicle Infotainment and Telematics Systems. In Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications, Valetta, Malta, 13 November 2016; pp. 25–31. [Google Scholar]
- Ryan, C.; Murphy, F.; Mullins, M. Semiautonomous Vehicle Risk Analysis: A Telematics-Based Anomaly Detection Approach. Risk Anal. 2019, 39, 1125–1140. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhao, G.; Ou, B. A fuel economy optimization system with applications in vehicles with human drivers and autonomous vehicles. Transp. Res. Part D Transp. Environ. 2011, 16, 515–524. [Google Scholar] [CrossRef]
- He, Y.; Rios, J.; Chowdhury, M.; Pisu, P.; Bhavsar, P. Forward power-train energy management modeling for assessing benefits of integrating predictive traffic data into plug-in-hybrid electric vehicles. Transp. Res. Part D Transp. Environ. 2012, 17, 201–207. [Google Scholar] [CrossRef]
- Wadud, Z.; MacKenzie, D.; Leiby, P. Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles. Transp. Res. Part A Policy Pract. 2016, 86, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Zhuge, C.; Wang, C. Integrated modelling of autonomous electric vehicle diffusion: From review to conceptual design. Transp. Res. Part D Transp. Environ. 2021, 91, 102679. [Google Scholar] [CrossRef]
- Cox, B.L.; Mutel, C.L.; Bauer, C.; Beltran, A.M.; van Vuuren, D.P. Uncertain Environmental Footprint of Current and Future Battery Electric Vehicles. Environ. Sci. Technol. 2018, 52, 4989–4995. [Google Scholar] [CrossRef]
- Vahidi, A.; Sciarretta, A. Energy saving potentials of connected and automated vehicles. Transp. Res. Part C Emerg. Technol. 2018, 95, 822–843. [Google Scholar] [CrossRef]
- Mahmassani, H.S. 50th Anniversary Invited Article—Autonomous Vehicles and Connected Vehicle Systems: Flow and Operations Considerations. Transp. Sci. 2016, 50, 1140–1162. [Google Scholar] [CrossRef]
- Malikopoulos, A.A.; Cassandras, C.G.; Zhang, Y.J. A decentralized energy-optimal control framework for connected automated vehicles at signal-free intersections. Automatica 2018, 93, 244–256. [Google Scholar] [CrossRef] [Green Version]
- Guidoni, D.L.; Maia, G.; Souza, F.S.H.; Villas, L.A.; Loureiro, A.A.F. Vehicular Traffic Management Based on Traffic Engineering for Vehicular Ad Hoc Networks. IEEE Access 2020, 8, 45167–45183. [Google Scholar] [CrossRef]
- Ryan, C.; Murphy, F.; Mullins, M. Spatial risk modelling of behavioural hotspots: Risk-aware path planning for autonomous vehicles. Transp. Res. Part A Policy Pract. 2020, 134, 152–163. [Google Scholar] [CrossRef]
- Bevly, D.; Cao, X.; Gordon, M.; Ozbilgin, G.; Kari, D.; Nelson, B.; Woodruff, J.; Barth, M.; Murray, C.; Kurt, A.; et al. Lane Change and Merge Maneuvers for Connected and Automated Vehicles: A Survey. IEEE Trans. Intell. Veh. 2016, 1, 105–120. [Google Scholar] [CrossRef]
- Rios-Torres, J.; Malikopoulos, A.A. A Survey on the Coordination of Connected and Automated Vehicles at Intersections and Merging at Highway On-Ramps. IEEE Trans. Intell. Transp. Syst. 2016, 18, 1066–1077. [Google Scholar] [CrossRef]
- Liu, K.; Li, K.; Peng, Q.; Zhang, C. A brief review on key technologies in the battery management system of electric vehicles. Front. Mech. Eng. 2019, 14, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Mohamed, A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renew. Sustain. Energy Rev. 2017, 78, 834–854. [Google Scholar] [CrossRef]
- Xiong, R.; Li, L.; Tian, J. Towards a smarter battery management system: A critical review on battery state of health monitoring methods. J. Power Sources 2018, 405, 18–29. [Google Scholar] [CrossRef]
- Xiong, R.; Cao, J.; Yu, Q.; He, H.; Sun, F. Critical Review on the Battery State of Charge Estimation Methods for Electric Vehicles. IEEE Access 2018, 6, 1832–1843. [Google Scholar] [CrossRef]
- MacHardy, Z.; Khan, A.; Obana, K.; Iwashina, S. V2X Access Technologies: Regulation, Research, and Remaining Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 1858–1877. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Shi, Y.; Zhao, L. LTE-V: A TD-LTE-Based V2X Solution for Future Vehicular Network. IEEE Internet Things J. 2016, 3, 997–1005. [Google Scholar] [CrossRef]
- Lyu, F.; Zhu, H.; Cheng, N.; Zhou, H.; Xu, W.; Li, M.; Shen, X. Characterizing Urban Vehicle-to-Vehicle Communications for Reliable Safety Applications. IEEE Trans. Intell. Transp. Syst. 2020, 21, 2586–2602. [Google Scholar] [CrossRef] [Green Version]
- Elsadig, M.A.; Fadlalla, Y.A. VANETs Security Issues and Challenges: A Survey. Indian J. Sci. Technol. 2016, 9. [Google Scholar] [CrossRef]
- Alasmary, W.; Zhuang, W. Mobility impact in IEEE 802.11p infrastructureless vehicular networks. Ad Hoc Netw. 2012, 10, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Wikner, E.; Thiringer, T. Extending Battery Lifetime by Avoiding High SOC. Appl. Sci. 2018, 8, 1825. [Google Scholar] [CrossRef] [Green Version]
- Council of the European Union. Directive 2009/136/EC. Off. J. Eur. Union 2009, 26. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:337:0011:0036:en:PDF (accessed on 22 April 2021).
- Council of the European Union. REGULATION (EU) 2016/679. Off. J. Eur. Union 2016, 88. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679 (accessed on 22 April 2021).
- Privacy International Connected Cars: What Happens to Our Data on Rental Cars? 2017. Available online: https://privacyinternational.org/sites/default/files/2017-12/cars_briefing.pdf (accessed on 17 February 2021).
- Deloitte European Motor Insurance Study: The Rise of Digitally-Enabled Motor Insurance. Available online: https://www2.deloitte.com/content/dam/Deloitte/be/Documents/finance/European-Motor-Insurance-Study_2nd-edition_November-2016.pdf (accessed on 2 March 2021).
- Husnjak, S.; Peraković, D.; Forenbacher, I.; Mumdziev, M. Telematics System in Usage Based Motor Insurance. Procedia Eng. 2015, 100, 816–825. [Google Scholar] [CrossRef] [Green Version]
- Osafune, T.; Takahashi, T.; Kiyama, N.; Sobue, T.; Yamaguchi, H.; Higashino, T. Analysis of Accident Risks from Driving Behaviors. Int. J. Intell. Transp. Syst. Res. 2017, 15, 192–202. [Google Scholar] [CrossRef]
- Arumugam, S.; Bhargavi, R. A survey on driving behavior analysis in usage based insurance using big data. J. Big Data 2019, 6, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Ayuso, M.; Guillen, M.; Nielsen, J.P. Improving automobile insurance ratemaking using telematics: Incorporating mileage and driver behaviour data. Transportation 2019, 46, 735–752. [Google Scholar] [CrossRef] [Green Version]
- So, B.; Boucher, J.-P.; Valdez, E. Synthetic Dataset Generation of Driver Telematics. Risks 2021, 9, 58. [Google Scholar] [CrossRef]
- Tselentis, D.I.; Yannis, G.; Vlahogianni, E.I. Innovative Insurance Schemes: Pay as/how You Drive. Transp. Res. Procedia 2016, 14, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Shannon, D.; Murphy, F.; Mullins, M.; Eggert, J. Applying crash data to injury claims—an investigation of determinant factors in severe motor vehicle accidents. Accid. Anal. Prev. 2018, 113, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Czarnecki, K. English Translation of the German Road Traffic Act Amendment Regulating the Use of “Motor Vehicles with Highly or Fully Automated Driving Function” from July 17, 2017. Available online: https://www.researchgate.net/profile/Krzysztof_Czarnecki3/publication/320813344 (accessed on 3 December 2020).
- European Commission. Directorate General for Communications Networks, Content and Technology; empirica Gesellschaft für Kommunikations und Technologieforschung mbH; TÜV Rheinland. Mobile Broadband Prices in Europe 2019: Final Report and Executive Summary; Publications Office: Brusells, Belgium, 2019. [Google Scholar]
- Martens, B.; Mueller-Langer, F. Access to Digital Car Data and Competition in Aftersales Services. SSRN J. 2018, 31. [Google Scholar] [CrossRef] [Green Version]
- Wolford, B. What Are the GDPR Fines? Available online: https://gdpr.eu/fines/ (accessed on 16 April 2021).
- Coppola, R.; Morisio, M. Connected Car. ACM Comput. Surv. 2016, 49, 1–36. [Google Scholar] [CrossRef]
- European Environment Agency. The First and Last Mile: The Key to Sustainable Urban Transport: Transport and Environment Report 2019; Publications Office: Brussels, Belgium, 2020. [Google Scholar]
- Pelletier, S.; Jabali, O.; Laporte, G.; Veneroni, M. Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models. Transp. Res. Part B Methodol. 2017, 103, 158–187. [Google Scholar] [CrossRef]
- Fafoutellis, P.; Mantouka, E.; Vlahogianni, E. Eco-Driving and Its Impacts on Fuel Efficiency: An Overview of Technologies and Data-Driven Methods. Sustainability 2020, 13, 226. [Google Scholar] [CrossRef]
- Ndikumana, A.; Tran, N.H.; Ho, T.M.; Niyato, D.; Han, Z.; Hong, C.S. Joint incentive mechanism for paid content caching and price based cache replacement policy in named data networking. IEEE Access 2018, 6, 33702–33717. [Google Scholar] [CrossRef]
- Hoepman, J.-H. Privacy Design Strategies. In ICT Systems Security and Privacy Protection; Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou el Kalam, A., Sans, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 428, pp. 446–459. ISBN 978-3-642-55414-8. [Google Scholar]
- Dorri, A.; Steger, M.; Kanhere, S.S.; Jurdak, R. BlockChain: A Distributed Solution to Automotive Security and Privacy. IEEE Commun. Mag. 2017, 55, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Shetty, S.; Tosh, D.; Kamhoua, C.; Kwiat, K.; Njilla, L. ProvChain: A Blockchain-Based Data Provenance Archi-tecture in Cloud Environment with Enhanced Privacy and Availability. In Proceedings of the 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), Madrid, Spain, 14–17 May 2017; pp. 468–477. [Google Scholar]
- Almusaylim, Z.A.; Jhanjhi, N. Comprehensive Review: Privacy Protection of User in Location-Aware Services of Mobile Cloud Computing. Wirel. Pers. Commun. 2020, 111, 541–564. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, W.; Zhu, T.; Gao, L.; Xiang, Y. Location Privacy and Its Applications: A Systematic Study. IEEE Access 2018, 6, 17606–17624. [Google Scholar] [CrossRef]
- European Automotive Manufacturers Association ACEA. Strategy Paper on Connectivity; ACEA: Brusells, Belgium, 2016; p. 14. [Google Scholar]
- Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A Survey on Mobile Edge Computing: The Communication Perspective. IEEE Commun. Surv. Tutor. 2017, 19, 2322–2358. [Google Scholar] [CrossRef] [Green Version]
- Storck, C.R.; Duarte-Figueiredo, F. A Survey of 5G Technology Evolution, Standards, and Infrastructure Associated with Vehicle-to-Everything Communications by Internet of Vehicles. IEEE Access 2020, 8, 117593–117614. [Google Scholar] [CrossRef]
- Cao, D.; Jiang, Y.; Wang, J.; Ji, B.; Alfarraj, O.; Tolba, A.; Ma, X.; Liu, Y. ARNS: Adaptive Relay-Node Selection Method for Message Broadcasting in the Internet of Vehicles. Sensors 2020, 20, 1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Telematic Constraint | Application of Telematics | Limitation | Cost | Reference |
---|---|---|---|---|
Technical | Communication | DRSC | High Latency | [43,44] |
LTE-V2X | Unreliable | [45] | ||
Battery Monitoring System | Model Based (EM, ECM, EIM) | Inaccurate | [40] | |
Machine Learning | Data requirements | [41] | ||
Storage | Current Memory 15MB | Increase to 25GB | [9,11] | |
Regulatory | Embedded Telematics | ePrivacy | Restricted Data Access | [47] |
GDPR | - | [48] | ||
User Consent Requirement | Ability to delete data | EU Requirement | [1,2] | |
Profile Management | ||||
Host Vehicle Processing | Host processing | Computational Cost | [2] (p. 10) | |
Third Party Processing | - | [1] (p. 16) | ||
Geolocation Restrictions | Limited Access | Driver Behavior | [51,52,53] | |
Fraud Detection | [51] |
Application of Telematics | Limitation | Suggestion | Benefit | Cost |
---|---|---|---|---|
Data Access and Privacy | Privacy-by-Design | Privacy and | −2% Revenue | |
Blockchain Privacy | Data Access | Fine | ||
Geolocation | Homomorphic Encryption | Driver Behavior, | Deloitte | |
Insurance | Attribute-Based Encryption | Fraud Detection | ||
Consolidation | OEM Consolidation | Standardization | ~GBP 100 per Vehicle | |
Third Party | >GBP 100 per Vehicle | |||
Third Party Services | Data Access and Privacy | Privacy-by-Design | Privacy and Data Access | −2% Revenue |
Energy Reduction Schemes | Battery Monitoring | Naturalistic Driving Data | Intermediate Alternative | Battery Life > 5 years |
Communication and Latency | Latency and Reliability | 5G, Edge Caching, Vehicle Fog | Increased Transmission Speed and Reliability | 1 ms Latency |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McDonnell, K.; Murphy, F.; Sheehan, B.; Masello, L.; Castignani, G.; Ryan, C. Regulatory and Technical Constraints: An Overview of the Technical Possibilities and Regulatory Limitations of Vehicle Telematic Data. Sensors 2021, 21, 3517. https://doi.org/10.3390/s21103517
McDonnell K, Murphy F, Sheehan B, Masello L, Castignani G, Ryan C. Regulatory and Technical Constraints: An Overview of the Technical Possibilities and Regulatory Limitations of Vehicle Telematic Data. Sensors. 2021; 21(10):3517. https://doi.org/10.3390/s21103517
Chicago/Turabian StyleMcDonnell, Kevin, Finbarr Murphy, Barry Sheehan, Leandro Masello, German Castignani, and Cian Ryan. 2021. "Regulatory and Technical Constraints: An Overview of the Technical Possibilities and Regulatory Limitations of Vehicle Telematic Data" Sensors 21, no. 10: 3517. https://doi.org/10.3390/s21103517