A Portable Waterproof EEG Acquisition Device for Dolphins
Abstract
:1. Introduction
2. Design of the Acquisition Device
2.1. Device Composition
2.2. Electrical Components
2.3. Working Principle
2.3.1. Measurement of the Surface Contact Resistance
2.3.2. Signal Acquisition and Storage
2.4. Waterproof Measures for Electrical Parts
3. Materials and Methods
- (1)
- Install a short silicone plate on the back of the acquisition box with screws into the mounting holes.
- (2)
- Stick the short silicone plate onto the long silicone belt with silicone adhesive (Jl-401ab) and wait for half an hour until completely dry.
- (3)
- Place the circuit board carefully in the device box and tighten the screws of the device box cover, and at the same time connect the experimental electrodes through the aviation plug.
- (4)
- Stick the surface of the transparent cover with electrical tapes to avoid visual interference to the animals, which is brought by the flashing power light on the circuit board.
- (5)
- Adjust the silicone belt length with the help of Velcro on both ends to fit around the dolphin’s chest circumference and place it in front of the dorsal fin to ensure it does not fall off.
4. Signal Processing and Analysis
4.1. Collected Signals
4.2. ECG Artifacts
4.3. Signal Labeling
4.4. Power Spectrum Analysis
5. Discussion and Conclusions
- (1)
- Perform an additional device test.
- (2)
- Improve the performance and control device size.
- (3)
- Improve the waterproof capability and wear comfort.
- (4)
- Improve software and video synchronization.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Piccolino, M. Animal electricity and the birth of electrophysiology: The legacy of Luigi Galvani. Brain Res. Bull. 1998, 46, 381–407. [Google Scholar] [CrossRef]
- Drinkenburg, W.H.I.M.; Ahnaou, A.; Ruigt, G.S.F. Pharmaco-EEG studies in animals: A history-based introduction to contemporary translational applications. Neuropsychobiology 2015, 72, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Vyazovskiy, V.; Borbély, A.A.; Tobler, I. Fast track:Unilateral vibrissae stimulation during waking induces interhemispheric eeg asymmetry during subsequent sleep in the rat. J. Sleep Res. 2000, 9, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Aydin-Abidin, S.; Moliadze, V.; Eysel, U.T.; Funke, K. Effects of repetitive TMS on visually evoked potentials and EEG in the anaesthetized cat: Dependence on stimulus frequency and train duration. J. Physiol. 2006, 574, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Bimbi, M.; Festante, F.; Coudé, G.; Vanderwert, R.E.; Fox, N.A.; Ferrari, P.F. Simultaneous scalp recorded EEG and Local field potentials from monkey ventral premotor cortex during action observation and execution reveals the contribution of mirror and motor neurons to the mu-rhythm. NeuroImage 2018, 175, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, K.J.; Jang, J.-W.; Lee, S.; Kim, S. An EEG System to detect brain signals from multiple adult zebrafish. Biosens. Bioelectron. 2020, 164, 112315. [Google Scholar] [CrossRef] [PubMed]
- Lyamin, O.I.; Lapierre, J.L.; Kosenko, P.O.; Mukhametov, L.M.; Siegel, J.M. Electroencephalogram asymmetry and spectral power during sleep in the northern fur seal. J. Sleep Res. 2008, 17, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Lyamin, O.I.; Mukhametov, L.M.; Siegel, J.M.; Nazarenko, E.A.; Polyakova, I.G.; Shpak, O.V. Unihemispheric slow wave sleep and the state of the eyes in a white whale. Behav. Brain Res. 2002, 129, 125–129. [Google Scholar] [CrossRef]
- McCormick, J.G.; Ridgway, S.H. History of the development of anesthesia for the dolphin a quest to study a brain as large as man’s. Anesthesiology 2018, 129, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Oelschläger, H.H.A. The dolphin brain—A challenge for synthetic neurobiology. Brain Res. Bull. 2008, 75, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Johannessen, C.L.; Harder, J.A. Sustained swimming speeds of dolphins. Science 1960, 132, 1550–1551. [Google Scholar] [CrossRef] [PubMed]
- Mukhametov, L.M.; Supin, A.Y.; Polyakova, I.G. Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Res. 1977, 134, 581–584. [Google Scholar] [CrossRef]
- Ridgway, S.H. Asymmetry and symmetry in brain waves from dolphin left and right hemispheres: Some observations after anesthesia, during quiescent hanging behavior, and during visual obstruction. Brain Behav. Evol. 2002, 60, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-J.; Byun, D.; Nam, T.-S.; Choi, S.-Y.; Lee, B.-G.; Kim, M.-K.; Kim, S. Zebrafish as an animal model in epilepsy studies with multichannel EEG recordings. Sci. Rep. 2017, 7, 3099. [Google Scholar] [CrossRef] [PubMed]
- Hashio, F.; Tamura, S.; Okada, Y.; Morimoto, S.; Ohta, M.; Uchida, N. Frequency analysis of electroencephalogram recorded from a bottlenose dolphin (tursiops truncatus) with a novel method during transportation by truck. J. Physiol. Sci. 2010, 60, 235–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Nachtigall, P.E.; Breese, M. Dolphin hearing during echolocation: Evoked potential responses in an atlantic bottlenose dolphin (tursiops truncatus). J. Exp. Biol. 2011, 214, 2027–2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyssotski, A.L.; Serkov, A.N.; Itskov, P.M.; Dell’Omo, G.; Latanov, A.V.; Wolfer, D.P.; Lipp, H.-P. miniature neurologgers for flying pigeons: Multichannel EEG and action and field potentials in combination with GPS recording. J. Neurophysiol. 2006, 95, 1263–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyamin, O.I.; Kosenko, P.O.; Vyssotski, A.L.; Lapierre, J.L.; Siegel, J.M.; Mukhametov, L.M. Study of Sleep in a Walrus. In Doklady Biological Sciences; Springer: Berlin/Heidelberg, Germany, 2012; Volume 444, pp. 188–191. [Google Scholar]
- Kendall-Bar, J.M.; Vyssotski, A.L.; Mukhametov, L.M.; Siegel, J.M.; Lyamin, O.I. Eye state asymmetry during aquatic unihemispheric slow wave sleep in northern fur seals (Callorhinus Ursinus). PLoS ONE 2019, 14, e0217025. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.R.; Sullivan, L.R.; Sabau, D.; Orta, D.S.J.; Dombrowski, K.E.; Halford, J.J.; Hani, A.J.; Drislane, F.W.; Stecker, M.M. American Clinical Neurophysiology Society Guideline 1: Minimum technical requirements for performing clinical electroencephalography. Neurodiagnostic J. 2016, 56, 235–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Label | Signal Length(s) | Scene |
---|---|---|
UW1 | 100 | Underwater |
UW2 | 90 | Underwater |
AS | 30 | Ashore |
Number | Motion States | Time Length(s) |
---|---|---|
UW1 | Motionless | 13.55 |
UW2 | Swimming | 54.52 |
AS | Ashore | 30.00 |
Motion States | Number of Segments |
---|---|
Motionless | 2 |
Swimming | 6 |
Ashore | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Li, N.; Li, Y.; Liu, W. A Portable Waterproof EEG Acquisition Device for Dolphins. Sensors 2021, 21, 3336. https://doi.org/10.3390/s21103336
Yu Y, Li N, Li Y, Liu W. A Portable Waterproof EEG Acquisition Device for Dolphins. Sensors. 2021; 21(10):3336. https://doi.org/10.3390/s21103336
Chicago/Turabian StyleYu, Yanchao, Ni Li, Yan Li, and Wentao Liu. 2021. "A Portable Waterproof EEG Acquisition Device for Dolphins" Sensors 21, no. 10: 3336. https://doi.org/10.3390/s21103336
APA StyleYu, Y., Li, N., Li, Y., & Liu, W. (2021). A Portable Waterproof EEG Acquisition Device for Dolphins. Sensors, 21(10), 3336. https://doi.org/10.3390/s21103336