Comparison of Multi-Frequency and Multi-Coil Electromagnetic Induction (EMI) for Mapping Properties in Shallow Podsolic Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analysis
2.3. Electromagnetic Induction Surveys
2.3.1. Field Data Collection
2.3.2. Theoretical Investigation Depth
2.4. EMI Data Processing
3. Results and Discussion
3.1. Descriptive Analysis of Soil Properties
3.2. Descriptive Analysis for ECa Data
3.3. Correlation to the Targeted Soil Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Allred, B.J. Agricultural geophysics: Past/present accomplishments and future advancements. In Proceedings of the Second Global Workshop on Proximal Soil Sensing—Montreal 2011, Montreal, QC, Canada, 15–18 May 2011; Volume 1, pp. 24–32. [Google Scholar]
- Altdorff, D.; Galagedara, L.; Nadeem, M.; Cheema, M.; Unc, A. Effect of agronomic treatments on the accuracy of soil moisture mapping by electromagnetic induction. Catena 2018, 164, 96–106. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Brevik, E.C. The use of electromagnetic induction techniques in soil studies. Geoderma 2014, 223, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, H.S.; Hoogmoed, W.B.; van Henten, E.J. Sensor data fusion to predict multiple soil properties. Precis. Agric. 2012, 13, 628–645. [Google Scholar] [CrossRef]
- Serrano, J.M.; Shahidian, S.; da Silva, J.R.M. Apparent electrical conductivity in dry versus wet soil conditions in a shallow soil. Precis. Agric. 2013, 14, 99–114. [Google Scholar] [CrossRef]
- Altdorff, D.; von Hebel, C.; Borchard, N.; van der Kruk, J.; Bogena, H.; Vereecken, H.; Huisman, J.A. Potential of catchment-wide soil water content prediction using electromagnetic induction in a forest ecosystem. Environ. Earth Sci. 2017, 76, 1–11. [Google Scholar] [CrossRef]
- André, F.; van Leeuwen, C.; Saussez, S.; Van Durmen, R.; Bogaert, P.; Moghadas, D.; de Rességuier, L.; Delvaux, B.; Vereecken, H.; Lambot, S. High-Resolution Imaging of a Vineyard in South of France Using Ground-Penetrating Radar, Electromagnetic Induction and Electrical Resistivity Tomography. J. Appl. Geophys. 2012, 78, 113–122. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Weller, U.; Zipprich, M.; Sommer, M.; Castell, W.Z.; Wehrhan, M. Mapping clay content across boundaries at the landscape scale with electromagnetic induction. Soil Sci. Soc. Am. J. 2007, 71, 1740–1747. [Google Scholar] [CrossRef]
- Robinson, D.A.; Lebron, I.; Kocar, B.; Phan, K.; Sampson, M.; Crook, N.; Fendorf, S. Time-lapse geophysical imaging of soil moisture dynamics in tropical deltaic soils: an aid to interpreting hydrological and geochemical processes. Water Resour. Res. 2009, 45, W00D32. [Google Scholar] [CrossRef]
- Altdorff, D.; Bechtold, M.; van der Kruk, J.; Vereecken, H.; Huisman, J.A. Mapping peat layer properties with multi-coil offset electromagnetic induction and laser scanning elevation data. Geoderma 2016, 261, 178–189. [Google Scholar] [CrossRef]
- Brevik, E.C.; Fenton, T.E. The effect of changes in bulk density on soil electrical conductivity as measured with the Geonics EM-38. Soil Horizons 2004, 45, 96–102. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. 2005 Characterizing soil spatial variability with apparent soil electrical conductivity: Part II. Case study. Comput. Electron. Agric. 2005, 46, 135–152. [Google Scholar] [CrossRef]
- Corwin, D.L.; Scudiero, E. Field-scale apparent soil electrical conductivity. In Methods of Soil Analysis; Logsdon, S., Ed.; Soil Science Society of America: Madison, WI, USA, 2016; Volume 1, pp. 1–30. [Google Scholar] [CrossRef]
- Rodrigues, F.A.; Bramley, R.G.V.; Gobbett, D.L. Proximal soil sensing for Precision Agriculture: Simultaneous use of electromagnetic induction and gamma radiometrics in contrasting soils. Geoderma 2015, 243, 183–195. [Google Scholar] [CrossRef]
- Friedman, S.P. Soil properties influencing apparent electrical conductivity: A review. Comput. Electron. Agric. 2005, 46, 45–70. [Google Scholar] [CrossRef]
- Archie, G.E. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- De Smedt, P.; Van Meirvenne, M.; Herremans, D.; De Reu, J.; Saey, T.; Meerschman, E.; Crombé, P.; De Clercq, W. The 3-D reconstruction of medieval wetland reclamation through electromagnetic induction survey. Sci. Rep. 2013, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Pedrera-Parrilla, A.; Van De Vijver, E.; Van Meirvenne, M.; Espejo-Pérez, A.J.; Giráldez, J.V.; Vanderlinden, K. Apparent electrical conductivity measurements in an olive orchard under wet and dry soil conditions: significance for clay and soil water content mapping. Precis. Agric. 2016, 17, 531–545. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Pachepsky, Y.; Montzka, C.; van der Kruk, J.; Bogena, H.; Weihermüller, L.; Herbst, M.; Martinez, G.; Vanderborght, J. On the spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol. 2014, 516, 76–96. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Mineral Soils Conditioned by a (Sub) Humid Temperate Climate. Available online: http://www.fao.org/docrep/003/Y1899E/y1899e12.htm (accessed on 30 March 2020).
- King, M.; Altdorff, D.; Li, P.; Galagedara, L.; Holden, J.; Unc, A. Northward shift of the agricultural climate zone under 21st-century global climate change. Sci. Rep. 2018, 8, 7904. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, P.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. 2010, 19, 755–768. [Google Scholar] [CrossRef]
- Evans, P.; Brown, C.D. The boreal–temperate forest ecotone response to climate change. Environ. Rev. 2017, 25, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Kirby, G.E. Soils of the Pasadena-Deer Lake area, Newfoundland. Available online: http://sis.agr.gc.ca/cansis/publications/surveys/nf/nf17/nf17_report.pdf (accessed on 11 August 2017).
- Waqar, A. Evaluating the Potential of Biochar in Mitigating Greenhouse Gases Emission and Nitrogen Retention in Dairy Manure-Based Silage Corn Cropping Systems. Master’s Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, 2018. [Google Scholar]
- Kroetsch, D.; Wang, C. Particle size distribution. In Soil Sampling and Methods of Analysis, 2nd ed.; Gregorich, E.G., Carter, M.R., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2007; pp. 713–726. [Google Scholar]
- Hao, X.; Ball, B.C.; Culley, J.L.B.; Carter, M.R.; Parkin, G.W. Soil density and porosity. In Soil Sampling and Methods of Analysis, 2nd ed.; Gregorich, E.G., Carter, M.R., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2007; pp. 743–759. [Google Scholar]
- Topp, G.C.; Parkin, G.W.; Ferre, T.P.A. Soil water content. In Soil Sampling and Methods of Analysis, 2nd ed.; Gregorich, E.G., Carter, M.R., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2007; pp. 939–961. [Google Scholar]
- Chapman, H.D. Cation-Exchange Capacity. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Black, C.A., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1965; pp. 891–900. [Google Scholar] [CrossRef]
- Hendershot, W.H.; Lalande, H.; Duquette, M. Soil reaction and exchangeable acidity. In Soil Sampling and Methods of Analysis, 2nd ed.; Gregorich, E.G., Carter, M.R., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2007; pp. 173–178. [Google Scholar]
- Miller, J.J.; Curtin, D. Electrical conductivity and soluble ions. In Soil Sampling and Methods of Analysis, 2nd ed.; Gregorich, E.G., Carter, M.R., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2007; pp. 161–171. [Google Scholar]
- Keller, G.V.; Frischknecht, F.C. Electrical Methods in Geophysical Prospecting; Pergamon Press: New York, NY, USA, 1966. [Google Scholar]
- McNeill, J.D. Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers; Geonics Limited: Mississauga, ON, Canada, 1980; pp. 1–13. [Google Scholar]
- von Hebel, C.; Rudolph, S.; Mester, A.; Huisman, J.A.; Kumbhar, P.; Vereecken, H.; van der Kruk, J. Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data. Water Resour. Res. 2014, 50, 2732–2748. [Google Scholar] [CrossRef] [Green Version]
- Minsley, B.J.; Abraham, J.; Smith, B.D.; Cannia, J.C.; Voss, C.I.; Jorgenson, M.T.; Walvoord, M.A.; Wylie, B.K.; Anderson, L.; Ball, L.B.; et al. Airborne electromagnetic imaging of discontinuous permafrost. Geophysi. Res. Lett. 2012, 39, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Simon, F.X.; Sarris, A.; Thiesson, J.; Tabbagh, A. Mapping of quadrature magnetic susceptibility/magnetic viscosity of soils by using multi-frequency EMI. J. Appl. Geophys. 2015, 120, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Sheets, K.R.; Hendrickx, J.M.H. Noninvasive soil water content measurement using electromagnetic induction. Water Resour. Res. 1995, 31, 2401–2409. [Google Scholar] [CrossRef]
- Bonsall, J.; Fry, R.; Gaffney, C.; Armit, I.; Beck, A.; Gaffney, V. Assessment of the CMD mini-explorer, a new low-frequency multi-coil electromagnetic device, for archaeological investigations. Archaeol. Prospect. 2013, 20, 219–231. [Google Scholar] [CrossRef]
- Won, I.J. A sweep-frequency electromagnetic exploration method. In Development of Geophysical Exploration Methods-4; Fitch, A.A., Ed.; Springer: Dordrecht, The Netherlands, 1983; p. 3964. [Google Scholar]
- Keiswetter, D.A.; Won, I.J. Multifrequency Electromagnetic Signature of the Cloud Chamber, Nevada Test Site. J. Environ. Eng. Geophys. 1997, 2, 99–103. [Google Scholar] [CrossRef]
- Thiesson, J.; Tabbagh, A.; Simon, F.X.; Dabas, M. 3D linear inversion of magnetic susceptibility data acquired by frequency domain EMI. J. Appl. Geophys. 2017, 136, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Picard, R.R.; Cook, R.D. Cross-validation of regression models. J. Am. Stat. Assoc. 1984, 79, 575–583. [Google Scholar] [CrossRef]
- Abdu, H.; Robinson, D.A.; Seyfried, M. Geophysical imaging of watershed subsurface patterns and prediction of soil texture and water holding capacity. Water Resour. Res. 2008, 44, W00D18. [Google Scholar] [CrossRef] [Green Version]
- Soil Science Division Staff. Soil Survey Manual; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; USDA Handbook 18; Government Printing Office: Washington, DC, USA, 2017.
- Waine, T.W.; Blackmore, B.S.; Godwin, R.J. Mapping available water content and estimating soil textural class using electromagnetic induction. In Proceedings of the AgEng Warwick 2000 Conference, University of Warwick, Coventry, UK, 2–7 July 2000. [Google Scholar]
- Heiniger, R.W.; McBride, M.B.; Clay, D.E. Using soil electrical conductivity to improve nutrient management. Agron. J. 2003, 95, 508–519. [Google Scholar] [CrossRef]
- Pedrera-Parrilla, A.; Brevik, E.C.; Van De Vijver, E.; Espejo, A.J.; Taguas, E.V.; Giráldez, J.V.; Martos, S.; Vanderlinden, K. Effects of different topsoil properties on apparent electrical conductivity under varying soil water contents. Estudios en la Zona No Saturada 2015, 12, 25–32. [Google Scholar]
- Serrano, J.; Shahidian, S.; da Silva, J.M. Spatial and temporal patterns of apparent electrical conductivity: DUALEM vs. Veris sensors for monitoring soil properties. Sensors 2014, 14, 10024–10041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domsch, H.; Giebel, A. Estimation of soil textural features from soil electrical conductivity recorded using the EM38. Precis. Agric. 2004, 5, 389–409. [Google Scholar] [CrossRef]
- Triantafilis, J.; Lesch, S.M. Mapping clay content variation using electromagnetic induction techniques. Comput. Electron. Agric. 2005, 46, 203–237. [Google Scholar]
- Bronson, K.F.; Booker, J.D.; Officer, S.J.; Lascano, R.J.; Maas, S.J.; Searcy, S.W.; Booker, J. Apparent electrical conductivity, soil properties and spatial covariance in the U.S. Southern High Plains. Precis. Agric. 2005, 6, 297–311. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Corwin, D.L. Soil electrical conductivity: Effects of soil properties and application to soil salinity appraisal. Commun. Soil Sci. Plant Anal. 1990, 21, 837–860. [Google Scholar] [CrossRef]
- Mojid, M.A.; Rose, D.A.; Wyseure, G.C. A model incorporating the diffuse double layer to predict the electrical conductivity of bulk soil. Euro. J. Soil Sci. 2007, 58, 560–572. [Google Scholar] [CrossRef]
- Corwin, D.L.; Scudiero, E. Mapping soil spatial variability with apparent soil electrical conductivity (ECa) directed soil sampling. Soil Sci. Soc. Am. J. 2019, 83, 3–4. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.A.; Abdu, H.; Lebron, I.; Jones, S.B. Imaging of hillslope soil moisture wetting patterns in a semi-arid oak savanna catchment using time-lapse electromagnetic induction. J. Hydrol. 2012, 416–417, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Saxton, K.E.; Willey, P.H. The SPAWmodel for agricultural field and pond hydrologic simulation. In Watershed Models; Singh, V.P., Frevert, D.K., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 401–435. [Google Scholar]
- Carroll, Z.L.; Oliver, M.A. Exploring the spatial relations between soil physical properties and apparent electrical conductivity. Geoderma 2005, 128, 354–374. [Google Scholar] [CrossRef]
Soil Property | Instrument | Standard Method |
---|---|---|
Soil texture | Standard hydrometer (ASTM, USA) | Hydrometer method [27] |
BD (g/cm3) | Core sampler with a sliding hammer | Core method [28] |
SWC (%) | Convection Oven (Thermo Scientific, USA) | Gravimetric with oven drying [29] |
CEC (cmol/kg) | Ion Chromatography- DionexTM ICS-5000+ DC-5 Detector/Chromatography (Thermo Scientific, Waltham, MA,USA) | Sodium Acetate method-EPA 9081 [30] |
pH | HI9813-6 portable pH/EC/TDS/Temperature meter (HANNA instruments, Woonsocket, RI, USA) | 0.01 M CaCl2 method [31] |
ECw (mS/cm) | HI9813-6 portable pH/EC/TDS/Temperature meter (HANNA instruments, Woonsocket, RI, USA) | EC1:2, soil: deionized water [32] |
Dry Day | Wet Day | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Mean | SD | CV | Min | Max | Mean | SD | CV | Min | Max |
Soil properties | ||||||||||
Sand (%) | 74.2 | 3.5 | 4.7 | 68.0 | 81.7 | - | - | - | - | - |
Silt (%) | 19.8 | 3.1 | 15.3 | 13.7 | 25.4 | - | - | - | - | - |
Clay (%) | 6.0 | 0.8 | 13.1 | 4.7 | 7.5 | - | - | - | - | - |
BD (g/cm3) | 1.4 | 0.1 | 5.1 | 1.3 | 1.5 | - | - | - | - | - |
SWC (%) | 12.3 | 1.6 | 12.9 | 9.3 | 15.5 | 19.7 | 3.0 | 15.0 | 15.1 | 23.8 |
pH | 5.4 | 0.2 | 3.7 | 4.9 | 5.7 | 5.7 | 0.2 | 4.2 | 5.3 | 6.1 |
CEC (cmol/kg) | 11.0 | 2.1 | 19.3 | 8.0 | 14.3 | 12.2 | 1.9 | 15.8 | 9.4 | 15.1 |
ECw (mS/m) | 20 | 10 | 41.2 | 10 | 50 | 10 | 0.0 | 26.8 | 10 | 10 |
MF‒EMI | ||||||||||
VCP‒38 kHz | 1.9 | 0.8 | 39.2 | 0.9 | 3.3 | 3.9 | 0.7 | 18.5 | 2.8 | 5.2 |
VCP‒49 kHz | 11.4 | 1.1 | 9.2 | 9.5 | 13.5 | 20.3 | 0.7 | 3.7 | 19.1 | 21.8 |
HCP‒38 kHz | 1.6 | 1.0 | 58.7 | 0.7 | 3.8 | 6.3 | 0.8 | 12.8 | 5.2 | 7.7 |
HCP‒49 kHz | 7.5 | 0.7 | 9.5 | 6.6 | 8.8 | 16.6 | 0.7 | 4.2 | 15.7 | 17.9 |
MC‒EMI | ||||||||||
VCP‒C2 | 3.4 | 0.3 | 7.5 | 2.9 | 3.9 | 6.2 | 0.8 | 12.8 | 5.3 | 7.7 |
VCP‒C3 | 3.1 | 0.3 | 8.0 | 2.6 | 3.5 | 3.5 | 0.4 | 11.0 | 2.7 | 4.1 |
HCP‒C2 | 4.0 | 0.3 | 6.6 | 3.6 | 4.5 | 4.4 | 0.4 | 9.0 | 3.7 | 5.0 |
HCP‒C3 | 3.6 | 0.3 | 8.9 | 3.1 | 4.1 | 4.2 | 0.4 | 10.2 | 3.5 | 5.1 |
VCP‒38 kHz | VCP‒49 kHz | HCP‒38 kHz | HCP‒49 kHz | VCP‒C2 | VCP‒C3 | HCP‒C2 | HCP‒C3 | |
---|---|---|---|---|---|---|---|---|
Dry day | ||||||||
Sand (%) | −0.48 | −0.48 | −0.34 | −0.41 | −0.75 *** | −0.69 ** | −0.68 ** | −0.43 |
Silt (%) | 0.61 * | 0.59 * | 0.48 | 0.55 * | 0.73 *** | 0.72 ** | 0.73 *** | 0.55 * |
Clay (%) | −0.26 | −0.20 | −0.38 | −0.33 | 0.45 | 0.20 | 0.18 | −0.24 |
BD (g/cm3) | −0.40 | −0.150 | −0.17 | −0.40 | −0.16 | −0.33 | −0.34 | −0.46 |
SWC (%) | 0.83 *** | 0.50 * | 0.65 ** | 0.76 *** | 0.55 * | 0.74 *** | 0.71 ** | 0.79 *** |
pH | −0.17 | −0.33 | −0.06 | −0.16 | 0.10 | 0.02 | −0.22 | −0.20 |
CEC (cmol/kg) | 0.70 ** | 0.51 * | 0.61 * | 0.65 ** | 0.60 * | 0.77 ** | 0.79 *** | 0.78 *** |
ECw (mS/cm) | 0.21 | 0.005 | 0.11 | 0.062 | 0.47 | 0.44 | 0.60 * | 0.38 |
Wet day | ||||||||
Sand (%) | −0.38 | −0.60 * | −0.41 | −0.47 | −0.48 | −0.72 ** | −0.61 * | −0.53 * |
Silt (%) | 0.51 * | 0.69 ** | 0.55 * | 0.60 * | 0.62 ** | 0.76 *** | 0.66 ** | 0.62 ** |
Clay (%) | −0.31 | −0.07 | −0.35 | −0.29 | −0.29 | 0.24 | 0.11 | −0.06 |
BD (g/cm3) | −0.43 | −0.28 | −0.33 | −0.37 | −0.37 | −0.28 | −0.34 | −0.39 |
SWC (%) | 0.47 | 0.63 ** | 0.47 | 0.56 * | 0.55 * | 0.81 *** | 0.77 *** | 0.68 ** |
pH | 0.09 | −0.08 | −0.03 | −0.10 | −0.07 | −0.15 | −0.11 | 0.02 |
CEC (cmol/kg) | 0.25 | 0.43 | 0.29 | 0.39 | 0.37 | 0.68 ** | 0.63 ** | 0.49 |
ECw (mS/cm) | 0.37 | 0.60 * | 0.39 | 0.37 | 0.38 | 0.63 ** | 0.50 * | 0.46 |
VCP–38 kHz | VCP–49 kHz | HCP–38 kHz | HCP–49 kHz | VCP–C2 | VCP–C3 | HCP–C2 | HCP–C3 | |
---|---|---|---|---|---|---|---|---|
Dry day | ||||||||
Sand (%) | 0 | 0.044 | 0 | 0 | 0.38 | 0.293 | 0.275 | 0 |
Silt (%) | 0.153 | 0.195 | 0 | 0.109 | 0.346 | 0.378 | 0.354 | 0.122 |
Clay (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
BD (g/cm3) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
SWC (%) | 0.571 | 0.072 | 0.223 | 0.411 | 0.07 | 0.384 | 0.296 | 0.506 |
pH | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CEC (cmol/kg) | 0.384 | 0.1 | 0.221 | 0.266 | 0.203 | 0.471 | 0.507 | 0.518 |
ECw (mS/cm) | 0 | 0 | 0 | 0 | 0 | 0 | 0.084 | 0 |
Wet day | ||||||||
Sand (%) | 0 | 0.138 | 0 | 0 | 0 | 0.363 | 0.171 | 0 |
Silt (%) | 0.075 | 0.29 | 0.105 | 0.147 | 0.166 | 0.453 | 0.278 | 0.138 |
Clay (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
BD (g/cm3) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
SWC (%) | 0 | 0.175 | 0.001 | 0.096 | 0.078 | 0.567 | 0.473 | 0.204 |
pH | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CEC (cmol/kg) | 0 | 0 | 0 | 0 | 0 | 0.327 | 0.228 | 0 |
ECw (mS/cm) | 0 | 0.08 | 0 | 0 | 0 | 0.192 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altdorff, D.; Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Galagedara, L. Comparison of Multi-Frequency and Multi-Coil Electromagnetic Induction (EMI) for Mapping Properties in Shallow Podsolic Soils. Sensors 2020, 20, 2330. https://doi.org/10.3390/s20082330
Altdorff D, Sadatcharam K, Unc A, Krishnapillai M, Galagedara L. Comparison of Multi-Frequency and Multi-Coil Electromagnetic Induction (EMI) for Mapping Properties in Shallow Podsolic Soils. Sensors. 2020; 20(8):2330. https://doi.org/10.3390/s20082330
Chicago/Turabian StyleAltdorff, Daniel, Kamaleswaran Sadatcharam, Adrian Unc, Manokarajah Krishnapillai, and Lakshman Galagedara. 2020. "Comparison of Multi-Frequency and Multi-Coil Electromagnetic Induction (EMI) for Mapping Properties in Shallow Podsolic Soils" Sensors 20, no. 8: 2330. https://doi.org/10.3390/s20082330
APA StyleAltdorff, D., Sadatcharam, K., Unc, A., Krishnapillai, M., & Galagedara, L. (2020). Comparison of Multi-Frequency and Multi-Coil Electromagnetic Induction (EMI) for Mapping Properties in Shallow Podsolic Soils. Sensors, 20(8), 2330. https://doi.org/10.3390/s20082330