A Novel Smooth Variable Structure Smoother for Robust Estimation
Abstract
1. Introduction
2. The SVSF Strategies
3. Smoothing Theories and the Proposed Algorithms
3.1. The Kalman Smoother
3.2. The Proposed SVSS Algorithm
The SVSS Algorithm |
Input {} and the sequence measurement {} Step 1 fiter Step 2 smoothing Output {} |
4. Simulation
4.1. A Classic Target Tracking Scenario
4.2. A Complex Maneuvering Environment Scenario
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Definition 1
Appendix A.2. Definition 2
Appendix A.3. Definition 3
Appendix A.4. Definition 4
Appendix A.5. Definition 5
Appendix B
Complexity | Complexity | ||
---|---|---|---|
PF | O(i3) | Ci | O(2i3 + mi3) |
PH | O(ji2) | BN | O(2ji2 + 2ij2 +mj3) |
P−1 | O(mi3) |
Different Lags | SVSF | One Lags | Two Lags | Three Lags |
---|---|---|---|---|
Single step run time (μs) | 48 | 72 | 120 | 180 |
References
- Di Viesti, P.; Vitetta, G.M.; Sirignano, E. Double Bayesian Smoothing as Message Passing. IEEE Trans. Signal Process. 2019, 67, 5495–5510. [Google Scholar] [CrossRef]
- Gao, R.; Tronarp, F.; Sarkka, S. Iterated Extended Kalman Smoother-Based Variable Splitting for L-1-Regularized State Estimation. IEEE Trans. Signal Process. 2019, 67, 5078–5092. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhang, H.B.; Mao, X.; Li, Y. Accurate Smoothing Methods for State Estimation of Continuous-Discrete Nonlinear Dynamic Systems. IEEE Trans. Autom. Control 2019, 64, 4284–4291. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Li, N.; Chambers, J. Robust Student’st based nonlinear filter and smoother. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2586–2596. [Google Scholar] [CrossRef]
- Rauch, H.E. Linear Estimation of Sampled Stochastic Processes with Random Parameters; Stanford Univ Ca Stanford Electronics Labs: Stanford, CA, USA, 1962. [Google Scholar]
- Rauch, H. Solutions to the linear smoothing problem. IEEE Trans. Autom. Control 1963, 8, 371–372. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Zhao, Y.; Mihaylova, L.; Chambers, J. Robust Rauch-Tung-Striebel smoothing framework for heavy-tailed and/or skew noises. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 415–441. [Google Scholar] [CrossRef]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Munguia, R.; Urzua, S.; Grau, A. EKF-Based Parameter Identification of Multi-Rotor Unmanned Aerial VehiclesModels. Sensors 2019, 19, 4174. [Google Scholar] [CrossRef]
- Gadsden, S.A.; Habibi, S.; Kirubarajan, T. Kalman and Smooth Variable Structure Filters for Robust Estimation. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1038–1050. [Google Scholar] [CrossRef]
- Arasaratnam, I.; Haykin, S. Cubature kalman filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269. [Google Scholar] [CrossRef]
- Gadsden, S.A.; Al-Shabi, M.; Arasaratnam, I.; Habibi, S.R. Combined cubature Kalman and smooth variable structure filtering: A robust nonlinear estimation strategy. Signal Process. 2014, 96, 290–299. [Google Scholar] [CrossRef]
- Zhang, K.W.; Hao, G.; Sun, S.L. Weighted Measurement Fusion Particle Filter for Nonlinear Systems with Correlated Noises. Sensors 2018, 18, 3242. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Xia, Y.; Deng, Y. A new particle filter based on smooth variable structure filter. Int. J. Adapt. Control Signal Process. 2020, 34, 32–41. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Shi, P.; Wu, Z.; Qian, J.; Chambers, J.A. Robust Kalman filters based on Gaussian scale mixture distributions with application to target tracking. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2082–2096. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Xu, B.; Wu, Z.; Chambers, J. A new outlier-robust Student’s t based Gaussian approximate filter for cooperative localization. IEEE Trans. Mechatron. 2017, 22, 2380–2386. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Zhao, Y.; Chambers, J.A. A Novel Robust Gaussian–Student’s t Mixture Distribution Based Kalman Filter. IEEE Trans. Signal Process. 2019, 67, 3606–3620. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Chambers, J.A. A Novel Kullback–Leibler Divergence Minimization-Based Adaptive Student’s t-Filter. IEEE Trans. Signal Process. 2019, 67, 5417–5432. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Wu, Z.; Li, N.; Chambers, J. A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices. IEEE Trans. Autom. Control 2017, 63, 594–601. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Li, N.; Wu, Z.; Chambers, J.A. A Novel Robust Student’st-Based Kalman Filter. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1545–1554. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Fang, J.; Wang, H. Robust Gaussian Kalman filter with outlier detection. IEEE Signal Process. Lett. 2018, 25, 1236–1240. [Google Scholar] [CrossRef]
- Skoglund, M.A.; Hendeby, G.; Axehill, D. Extended Kalman filter modifications based on an optimization view point. In Proceedings of the 2015 18th International Conference on Information Fusion (Fusion), Washington, DC, USA, 6–9 July 2015; pp. 1856–1861. [Google Scholar]
- Bakhshande, F.; Söffker, D. Adaptive Step Size Control of Extended/Unscented Kalman Filter using Event Handling Concept. Front. Mech. Eng. 2019, 5, 74. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Xu, B.; Wu, Z.; Chambers, J.A. A new adaptive extended Kalman filter for cooperative localization. IEEE Trans. Aerosp. Electron. Syst. 2017, 54, 353–368. [Google Scholar] [CrossRef]
- Milanese, M.; Tempo, R. Optimal algorithms theory for robust estimation and prediction. IEEE Trans. Autom. Control 1985, 30, 730–738. [Google Scholar] [CrossRef]
- Zhuk, S.M. Minimax state estimation for linear discrete-time differential-algebraic equations. Automatica 2010, 46, 1785–1789. [Google Scholar] [CrossRef][Green Version]
- Farrell, W.J. Interacting multiple model filter for tactical ballistic missile tracking. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 418–426. [Google Scholar] [CrossRef]
- Mazor, E.; Averbuch, A.; Bar-Shalom, Y.; Dayan, J. Interacting multiple model methods in target tracking: A survey. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 103–123. [Google Scholar] [CrossRef]
- Li, X.-R.; Bar-Shalom, Y. Multiple-model estimation with variable structure. IEEE Trans. Autom. Control 1996, 41, 478–493. [Google Scholar]
- Li, X.R.; Jilkov, V.P. Survey of maneuvering target tracking. Part V. Multiple-model methods. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1255–1321. [Google Scholar]
- Goodman, J.M.; Wilkerson, S.A.; Eggleton, C.; Gadsden, S.A. A Multiple Model Adaptive SVSF-KF Estimation Strategy. In Proceedings of the Signal Processing, Sensor/Information Fusion, and Target Recognition XXVIII, Baltimore, MD, USA, 15–17 April 2019. [Google Scholar]
- Habibi, S. The smooth variable structure filter. Proc. IEEE 2007, 95, 1026–1059. [Google Scholar] [CrossRef]
- Lee, A.; Gadsden, S.A.; Wilkerson, S.A. An Adaptive Smooth Variable Structure Filter based on the Static Multiple Model Strategy. In Proceedings of the Signal Processing, Sensor/Information Fusion, and Target Recognition XXVIII, Baltimore, MD, USA, 15–17 April 2019. [Google Scholar]
- Gadsden, S.A.; Habibi, S.R. A New Robust Filtering Strategy for Linear Systems. J. Dyn. Syst. Meas. Control Trans. 2013, 135, 014503. [Google Scholar] [CrossRef]
- Afshari, F.H.; Gadsden, S.A.; Habibi, S. A nonlinear second-order filtering strategy for state estimation of uncertain systems. Signal Process. 2019, 155, 182–192. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, L.; Chen, W.; Guo, K.; Shen, F.; Guo, Z. A novel robust filtering strategy for systems with Non-Gaussian noises. AEU Int. J. Electron. Commun. 2018, 97, 154–164. [Google Scholar] [CrossRef]
- Spiller, M.; Bakhshande, F.; Söffker, D. The uncertainty learning filter: A revised smooth variable structure filter. Signal Process. 2018, 152, 217–226. [Google Scholar] [CrossRef]
- Gadsden, S.A.; Habibi, S.R. A new form of the smooth variable structure filter with a covariance derivation. In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 7389–7394. [Google Scholar]
- Demim, F.; Nemra, A.; Louadj, K.; Hamerlain, M.; Bazoula, A. Cooperative SLAM for multiple UGVs navigation using SVSF filter. Automatika 2017, 58, 119–129. [Google Scholar] [CrossRef][Green Version]
- Demim, F.; Nemra, A.; Boucheloukh, A.; Kobzili, E.; Hamerlain, M.; Bazoula, A. SLAM based on Adaptive SVSF for Cooperative Unmanned Vehicles in Dynamic environment. IFAC Pap. 2019, 52, 73–80. [Google Scholar] [CrossRef]
- Kim, T.; Wang, Y.; Sahinoglu, Z.; Wada, T.; Hara, S.; Qiao, W. State of charge estimation based on a realtime battery model and iterative smooth variable structure filter. In Proceedings of the 2014 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA), Kuala Lumpur, Malaysia, 20–23 May 2014; pp. 132–137. [Google Scholar]
- Gadsden, S.A.; Al-Shabi, M.; Habibi, S. Estimation strategies for the condition monitoring of a battery system in a hybrid electric vehicle. ISRN Signal Process. 2011, 2011, 120351. [Google Scholar] [CrossRef]
- Gadsden, S.A.; Song, Y.; Habibi, S.R. Novel Model-Based Estimators for the Purposes of Fault Detection and Diagnosis. IEEE Trans. Mechatron. 2013, 18, 1237–1249. [Google Scholar] [CrossRef]
- Gadsden, S.A.; Kirubarajan, T. Development of a Variable Structure-Based Fault Detection and Diagnosis Strategy Applied to an Electromechanical System. In Proceedings of the Signal Processing, Sensor/Information Fusion, and Target Recognition XXVI, Anaheim, CA, USA, 10–12 April 2017. [Google Scholar]
- Ahmed, R.; El Sayed, M.; Gadsden, S.A.; Tjong, J.; Habibi, S. Automotive Internal-Combustion-Engine Fault Detection and Classification Using Artificial Neural Network Techniques. IEEE Trans. Veh. Technol. 2015, 64, 21–33. [Google Scholar] [CrossRef]
- Ahmed, R.; El Sayed, M.; Gadsden, S.A.; Tjong, J.; Habibi, S. Artificial neural network training utilizing the smooth variable structure filter estimation strategy. Neural Comput. Appl. 2016, 27, 537–554. [Google Scholar] [CrossRef]
- Ismail, M.; Attari, M.; Habibi, S.; Ziada, S. Estimation theory and Neural Networks revisited: REKF and RSVSF as optimization techniques for Deep-Learning. Neural Netw. 2018, 108, 509–526. [Google Scholar] [CrossRef]
- Gadsden, S.A.; Lee, A.S. Advances of the smooth variable structure filter: Square-root and two-pass formulations. J. Appl. Remote Sens. 2017, 11, 015018. [Google Scholar] [CrossRef]
- Gadsden, S.; Al-Shabi, M.; Kirubarajan, T. Two-Pass Smoother Based on the SVSF Estimation Strategy; SPIE: Washington, WA, USA, 2015; Volume 9474. [Google Scholar]
- Yan, B.; Xu, N.; Wang, G.; Yang, S.; Xu, L.P. Detection of Multiple Maneuvering Extended Targets by Three-Dimensional Hough Transform and Multiple Hypothesis Tracking. IEEE Access 2019, 7, 80717–80732. [Google Scholar] [CrossRef]
- Yan, B.; Xu, N.; Zhao, W.B.; Li, M.Q.; Xu, L.P. An Efficient Extended Targets Detection Framework Based on Sampling and Spatio-Temporal Detection. Sensors 2019, 19, 2912. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Xu, N.; Zhao, W.-B.; Xu, L.-P. A Three-Dimensional Hough Transform-Based Track-Before-Detect Technique for Detecting Extended Targets in Strong Clutter Backgrounds. Sensors 2019, 19, 881. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Zhao, X.Y.; Xu, N.; Chen, Y.; Zhao, W.B. A Grey Wolf Optimization-Based Track-Before-Detect Method for Maneuvering Extended Target Detection and Tracking. Sensors 2019, 19, 1577. [Google Scholar] [CrossRef]
- Habibi, S.R.; Burton, R. The variable structure filter. J. Dyn. Syst. Meas. Control Trans. 2003, 125, 287–293. [Google Scholar] [CrossRef]
- Grewal, M.; Andrews, A. Kalman Filtering: Theory and Practice with MATLAB, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Sun, S.L.; Ma, J. Optimal filtering and smoothing for discrete-time stochastic singular systems. Signal Process. 2007, 87, 189–201. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Gadsden, S.A. Smooth Variable Structure Filtering: Theory and Applications. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 2011. [Google Scholar]
Different Methods | KF | KS | RSTKF | SVSF | SVSS |
---|---|---|---|---|---|
Position of accumulative RMSE on x-axis (m) | 413 | 387 | 145 | 146 | 113 |
Position of accumulative RMSE om y-axis (m) | 413 | 387 | 144 | 148 | 117 |
Single step run time (μs) | 44 | 68 | 1192 | 48 | 72 |
Different Smooth Boundary Layer(m) | 100 | 500 | 1000 | 1500 | 2000 | 2500 | 3000 |
---|---|---|---|---|---|---|---|
SVSF position accumulative RMSE on x-axis(m) | 200 | 174 | 142 | 164 | 197 | 232 | 264 |
SVSS position accumulative RMSE on x-axis(m) | 143 | 127 | 110 | 118 | 131 | 142 | 151 |
SVSF position accumulative RMSE on y-axis(m) | 200 | 175 | 145 | 167 | 201 | 235 | 266 |
SVSS position accumulative RMSE on y-axis(m) | 143 | 129 | 117 | 134 | 160 | 186 | 209 |
State Estimation | KF | KS | SVSF | SVSTPS | SVSS |
---|---|---|---|---|---|
x-position accumulative RMSE(m) | 461 | 335 | 95 | 75 | 65 |
x-velocity accumulative RMSE(m/s) | 160 | 141 | 86 | 73 | 57 |
y-position accumulative RMSE(m) | 297 | 218 | 92 | 75 | 65 |
y-velocity accumulative RMSE(m/s) | 113 | 102 | 78 | 69 | 52 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Xu, L.; Yan, B.; Li, C. A Novel Smooth Variable Structure Smoother for Robust Estimation. Sensors 2020, 20, 1781. https://doi.org/10.3390/s20061781
Chen Y, Xu L, Yan B, Li C. A Novel Smooth Variable Structure Smoother for Robust Estimation. Sensors. 2020; 20(6):1781. https://doi.org/10.3390/s20061781
Chicago/Turabian StyleChen, Yu, Luping Xu, Bo Yan, and Cong Li. 2020. "A Novel Smooth Variable Structure Smoother for Robust Estimation" Sensors 20, no. 6: 1781. https://doi.org/10.3390/s20061781
APA StyleChen, Y., Xu, L., Yan, B., & Li, C. (2020). A Novel Smooth Variable Structure Smoother for Robust Estimation. Sensors, 20(6), 1781. https://doi.org/10.3390/s20061781