Next Article in Journal
Friction and Wear Mechanism Analysis of Polymer Flexible Cable Using a High Natural Frequency Piezoelectric Sensor
Previous Article in Journal
IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture
Previous Article in Special Issue
Ultra-Sensitive Fiber Refractive Index Sensor with Intensity Modulation and Self-Temperature Compensation
Open AccessArticle

Spectral Phase Shift Interferometry for Refractive Index Monitoring in Micro-Capillaries

Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
*
Author to whom correspondence should be addressed.
Sensors 2020, 20(4), 1043; https://doi.org/10.3390/s20041043
Received: 9 January 2020 / Revised: 10 February 2020 / Accepted: 12 February 2020 / Published: 14 February 2020
(This article belongs to the Special Issue Refractive Index Sensors)
In this work, we demonstrate spectral phase-shift interferometry operating in the near-infrared wavelength range for refractive index (RI) monitoring of fluidic samples in micro-capillaries. A detailed theoretical model was developed to calculate the phase-sensitive spectral reflectivity when low-cost rectangular glass micro-capillaries, filled with samples with different refractive indices, are placed at the end of the measurment arm of a Michelson interferometer. From the phase-sensitive spectral reflectivity, we recovered the cosine-shaped interferometric signal as a function of the wavelength, as well as its dependence on the sample RI. Using the readout radiation provided by a 40-nm wideband light source with a flat emission spectrum centered at 1.55 µm and a 2 × 1 fiberoptic coupler on the common input-output optical path, experimental results were found to be in good agreement with the expected theoretical behavior. The shift of the micro-capillary optical resonances, induced by RI variations in the filling fluids (comparing saline solution with respect to distilled water, and isopropanol with respect to ethanol) were clearly detected by monitoring the positions of steep phase jumps in the cosine-shaped interferometric signal recorded as a function of the wavelength. By adding a few optical components to the instrumental configuration previously demonstrated for the spectral amplitude detection of resonances, we achieved phase-sensitive detection of the wavelength positions of the resonances as a function of the filling fluid RI. The main advantage consists of recovering RI variations by detecting the wavelength shift of “sharp peaks”, with any amplitude above a threshold in the interferometric signal derivative, instead of “wide minima” in the reflected power spectra, which are more easily affected by uncertainties due to amplitude fluctuations.
Keywords: rectangular glass micro-capillaries; optical resonators; optical interferometry; phase detection; micro-opto-fluidic; optical sensing rectangular glass micro-capillaries; optical resonators; optical interferometry; phase detection; micro-opto-fluidic; optical sensing
Show Figures

Graphical abstract

MDPI and ACS Style

Bello, V.; Simoni, A.; Merlo, S. Spectral Phase Shift Interferometry for Refractive Index Monitoring in Micro-Capillaries. Sensors 2020, 20, 1043.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop