Robust Visual Tracking Based on Adaptive Multi-Feature Fusion Using the Tracking Reliability Criterion
Abstract
:1. Introduction
1.1. Related Work
1.2. Contributions
1.3. Paper Organization and Notation
2. Traditional Multi-Resolution Features Fusion Filter
3. The Proposed Method
3.1. Feature Adaptive Fusion Strategy in Filter Training
3.2. Multiple Online Detectors Based on Feature Tracking Reliability
4. Outline of the Proposed Method
5. Experiments and Analysis
5.1. Experimental Parameters
5.2. Evaluation Indicators
5.3. Comparisons and Analysis
5.3.1. Impact of the Feature Adaptive Fusion
5.3.2. Baseline Comparison
5.3.3. Attribute-Based Comparison
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- He, S.; Yang, Q.; Lau, R.W.; Wang, J.; Yang, M.-H. Visual Tracking via Locality Sensitive Histograms. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2427–2434. [Google Scholar]
- Jia, X.; Lu, H.; Yang, M.-H. Visual tracking via adaptive structural local sparse appearance model. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1822–1829. [Google Scholar]
- Sevilla-Lara, L.; Learnedmiller, E.G. Distribution fields for tracking. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1910–1917. [Google Scholar]
- Chen, Z.; Zhong, B.; Li, G.; Zhang, S.; Ji, R. Siamese Box Adaptive Network for Visual Tracking. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 6667–6676. [Google Scholar]
- Zhou, Q.; Zhong, B.; Lan, X.; Sun, G.; Zhang, Y.; Zhang, B.; Ji, R. Fine-grained spatial alignment model for person re-identification with focal triplet loss. IEEE Trans. Image Process. 2020, 29, 7578–7589. [Google Scholar] [CrossRef]
- Zhong, B.; Bai, B.; Li, J.; Zhang, Y.; Fu, Y. Hierarchical Tracking by Reinforcement Learning-Based Searching and Coarse-to-Fine Verifying. IEEE Trans. Image Process. 2019, 28, 2331–2341. [Google Scholar] [CrossRef] [PubMed]
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-Speed Tracking with Kernelized Correlation Filters. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 583–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danelljan, M.; Khan, F.S.; Felsberg, M.; Van De Weijer, J. Adaptive Color Attributes for Real-Time Visual Tracking. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1090–1097. [Google Scholar]
- Li, Y.; Zhu, J. A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration. In Computer Vision— ECCV 2014 Workshops. ECCV 2014. Lecture Notes in Computer Science; Springer: Cham, Switzerland; Volume 8926, 2015; pp. 254–265. [Google Scholar]
- Danelljan, M.; Häger, G.; Khan, F.S.; Felsberg, M. Discriminative Scale Space Tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1561–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Cruz, X.M.; Sergiyenko, O.Y.; Tyrsa, V.; Rivas-Lopez, M.; Hernandez-Balbuena, D.; Rodriguez-Quiñonez, J.C.; Basaca-Preciado, L.C.; Mercorelli, P. Optimization of 3D laser scanning speed by use of combined variable step. Opt. Lasers Eng. 2014, 54, 141–151. [Google Scholar] [CrossRef]
- Lindner, L.; Sergiyenko, O.; Rivas-López, M.; Ivanov, M.; Rodríguez-Quiñonez, J.C.; Hernández-Balbuena, D.; Flores-Fuentes, W.; Tyrsa, V.; Muerrieta-Rico, F.N.; Mercorelli, P. Machine vision system errors for unmanned aerial vehicle navigation. In Proceedings of the 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; pp. 1615–1620. [Google Scholar]
- Danelljan, M.; Hager, G.; Khan, F.S.; Felsberg, M. Learning Spatially Regularized Correlation Filters for Visual Tracking. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 4310–4318. [Google Scholar]
- Wu, Y.; Lim, J.; Yang, M.-H. Online Object Tracking: A Benchmark. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2411–2418. [Google Scholar]
- Yang, M.-H.; Lim, J.; Yang, M.-H. Object Tracking Benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1834–1848. [Google Scholar] [CrossRef] [Green Version]
- Mueller, M.; Smith, N.; Ghanem, B. A Benchmark and Simulator for UAV Tracking. In Computer Vision—ECCV 2016. Lecture Notes in Computer Science; Springer: Amsterdam, The Netherlands, 2016; Volume 9905, pp. 445–461. [Google Scholar]
- Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2544–2550. [Google Scholar]
- Boddeti, V.N.; Kanade, T.; Kumar, B.V.K.V. Correlation Filters for Object Alignment. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2291–2298. [Google Scholar]
- Henriques, J.F.; Carreira, J.; Caseiro, R.; Batista, J. Beyond Hard Negative Mining: Efficient Detector Learning via Block-Circulant Decomposition. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Portland, OR, USA, 23–28 June 2013; pp. 2760–2767. [Google Scholar]
- Galoogahi, H.K.; Sim, T.; Lucey, S. Multi-channel Correlation Filters. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Portland, OR, USA, 23–28 June 2013; pp. 3072–3079. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Van De Weijer, J.; Schmid, C.; Verbeek, J.; Larlus, D. Learning Color Names for Real-World Applications. IEEE Trans. Image Process. 2009, 18, 1512–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Z.; Wen, L.; Lei, Z.; Vasconcelos, N.; Li, S.Z. Robust Deformable and Occluded Object Tracking With Dynamic Graph. IEEE Trans. Image Process. 2014, 23, 5497–5509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.; Wang, D.; Lu, H.; Yang, M.-H. Correlation Tracking via Joint Discrimination and Reliability Learning. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 489–497. [Google Scholar]
- Xiao, J.; Stolkin, R.; Leonardis, A. Single target tracking using adaptive clustered decision trees and dynamic multi-level appearance models. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 4978–4987. [Google Scholar]
- Bertinetto, L.; Valmadre, J.; Golodetz, S.; Miksik, O.; Torr, P.H.S. Staple: Complementary Learners for Real-Time Tracking. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1401–1409. [Google Scholar]
- Danelljan, M.; Bhat, G.; Khan, F.S.; Felsberg, M. ECO: Efficient Convolution Operators for Tracking. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6931–6939. [Google Scholar]
- Seo, Y.; Shin, K.-S. Image classification of fine-grained fashion image based on style using pre-trained convolutional neural network. In Proceedings of the 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA), Shanghai, China, 9–12 March 2018; pp. 387–390. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, G.; Zhang, Z.; Huang, C.; Ren, X.; Wang, H.; Cai, C.; He, Z. Spatially supervised recurrent convolutional neural networks for visual object tracking. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 December 2016; pp. 779–788. [Google Scholar] [CrossRef] [Green Version]
- Voigtlaender, P.; Luiten, J.; Torr, P.H.; Leibe, B. Siam R-CNN: Visual Tracking by Re-Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 6577–6587. [Google Scholar]
- Zhou, Q.; Zhong, B.; Zhang, Y.; Li, J.; Fu, Y. Deep Alignment Network Based Multi-Person Tracking with Occlusion and Motion Reasoning. IEEE Trans. Multimed. 2019, 21, 1183–1194. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, X.; Yao, P.; Bai, Y. A health performance evaluation method of multirotors under wind turbulence. Nonlinear Dyn. 2020, 102, 1701–1715. [Google Scholar] [CrossRef]
- Jin, X.-B.; Lian, X.-F.; Su, T.-L.; Shi, Y.; Miao, B.-B. Closed-Loop Estimation for Randomly Sampled Measurements in Target Tracking System. Math. Probl. Eng. 2014, 2014, 315908. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Wang, X.; Jin, X.-B.; Zhao, Z.; Zhang, B. A Neuron-Based Kalman Filter with Nonlinear Autoregressive Model. Sensors 2020, 20, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.; Yang, X.; Zhang, C.; Yang, M.-H. Long-term correlation tracking. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5388–5396. [Google Scholar]
- Lukežic, A.; Vojír, T.; Zajc, L.C.; Matas, J.; Kristan, M. Discriminative Correlation Filter with Channel and Spatial Reliability. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4847–4856. [Google Scholar]
Input: The target position and scale in frame 1; |
Output: The target position and scale in frame t. |
Initialization: |
Crop out the image patch centered at and extract multi-category features in frame 1; |
Initialize the filter using Equation (6) and set in frame 1; |
Initialize the filter and ; |
Initialize the SVM detectors using Equation (9); |
for// Num is the number of frames in the video |
Crop out the image patch centered at and extract multi-category features in frame t; |
// Translation estimation |
Estimate the target position in frame t using Equation (8); |
// Tracking failure detection |
Compute the maximum response of the filter at position ; |
if |
//Target re-detection |
Activate detection module and return the candidate position ; |
Compute the maximum response of the sample extracted at position on the filter ; |
if |
Rectify the target position ; |
elseif |
Maintain the target position and discard the candidate position ; |
end if |
elseif |
The tracking failure doesn’t occur; |
end if |
Output: The target position . |
// Scale estimation |
Construct scale pyramid centered at in frame t and estimate using filter ; |
Output: The targe scale in frame t. |
// Model update |
Crop out the image patch centered at in frame t and extract multi-category features ; |
if |
Update the feature tracking reliability using Equation (6); // Feature tracking reliability evaluation |
Update the filter using Equation (7); |
Update the scale filter ; |
end if |
if |
Update the long-term filter and update multiple SVM detectors using Equation (10); |
end if |
end for |
Name | Symbol | Value |
---|---|---|
Shape parameter of interpolation function | a | |
Threshold of starting the detection module | 0.15 | |
Threshold of updating the Long-term filter | 0.38 | |
Threshold of adopting the re-detected result | 1.5 | |
Number of samples in sample space | 50 | |
Updating Period of tracker | 5 | |
Regularization parameter in Equation (12) | ||
Hyper-parameter of SVM detector | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Wang, H.; Jin, Y.; Hu, Z.; Wei, Q.; Li, J.; Li, J. Robust Visual Tracking Based on Adaptive Multi-Feature Fusion Using the Tracking Reliability Criterion. Sensors 2020, 20, 7165. https://doi.org/10.3390/s20247165
Zhou L, Wang H, Jin Y, Hu Z, Wei Q, Li J, Li J. Robust Visual Tracking Based on Adaptive Multi-Feature Fusion Using the Tracking Reliability Criterion. Sensors. 2020; 20(24):7165. https://doi.org/10.3390/s20247165
Chicago/Turabian StyleZhou, Lin, Han Wang, Yong Jin, Zhentao Hu, Qian Wei, Junwei Li, and Jifang Li. 2020. "Robust Visual Tracking Based on Adaptive Multi-Feature Fusion Using the Tracking Reliability Criterion" Sensors 20, no. 24: 7165. https://doi.org/10.3390/s20247165
APA StyleZhou, L., Wang, H., Jin, Y., Hu, Z., Wei, Q., Li, J., & Li, J. (2020). Robust Visual Tracking Based on Adaptive Multi-Feature Fusion Using the Tracking Reliability Criterion. Sensors, 20(24), 7165. https://doi.org/10.3390/s20247165