Energy Efficiency Analysis of MIMO Wideband RF Front-End Receivers
Abstract
1. Introduction
2. Preliminaries
2.1. Receiver Circuit Designs
2.2. Communication Model
3. Transmission Schemes
3.1. Outage Probability and Transmitted Power
3.1.1. SISO
3.1.2. AS
3.1.3. SVD
3.2. Effect of the SAW-Filters at the LNA Receiver
3.3. Energy Efficiency
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bera, A. 80 Insightful Internet of Things Statistics (Infographic); White Paper; Safeatlast: Fultonham, NY, USA, 2019. [Google Scholar]
- Osseiran, A.; Parkvall, S.; Persson, P.; Zaidi, A.; Magnusson, S.; Balachandran, K. 5G Wireless Access: An Overview; White Paper; Ericsson: Stockholm, Switzerland, 2020. [Google Scholar]
- Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios. IEEE Access 2020, 8, 23022–23040. [Google Scholar] [CrossRef]
- Asaad, S.; Rabiei, A.M.; Müller, R.R. Massive MIMO with Antenna Selection: Fundamental Limits and Applications. IEEE Trans. Wirel. Commun. 2018, 17, 8502–8516. [Google Scholar] [CrossRef]
- Dos Santos, E.L.; Mariano, A.A.; Brante, G.; Leite, B.; Souza, R.D.; Taris, T. Energy Efficiency in Multiple Antenna Machine-Type Communications With Reconfigurable RF Transceivers. IEEE Access 2019, 7, 113031–113042. [Google Scholar] [CrossRef]
- Chen, J.C. Energy-Efficient Analog Combiner Design Using Low-Resolution Phase Shifters and Antenna Selection for mmWave D2D Communications. IEEE Trans. Veh. Technol. 2020. [Google Scholar] [CrossRef]
- Radfar, M.; Nakhlestani, A.; Viet, H.L.; Desai, A. Battery Management Technique to Reduce Standby Energy Consumption in Ultra-Low Power IoT and Sensory Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 336–345. [Google Scholar] [CrossRef]
- Hong, S.; Lee, S.; Lee, J.; Je, M. A Multi-Mode ULP Receiver Based on an Injection-Locked Oscillator for IoT Applications. IEEE Access 2020, 8, 76966–76979. [Google Scholar] [CrossRef]
- Georgantas, T.; Vavelidis, K.; Haralabidis, N.; Bouras, S.; Vassiliou, I.; Kapnistis, C.; Kokolakis, Y.; Peyravi, H.; Theodoratos, G.; Vryssas, K.; et al. 9.1 A 13 mm 240 nm multiband GSM/EDGE/HSPA+/TDSCDMA/LTE transceiver. In Proceedings of the 2015 IEEE International Solid-State Circuits Conference—(ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 22–26 February 2015; pp. 1–3. [Google Scholar]
- Parvizi, M.; Allidina, K.; El-Gamal, M. An Ultra-Low-Power Wideband Inductorless CMOS LNA with Tunable Active Shunt-Feedback. IEEE Trans. Microw. Theory Tech. 2016, 64, 1–11. [Google Scholar] [CrossRef]
- Guo, B.; Chen, J.; Li, L.; Jin, H.; Yang, G. A Wideband Noise-Canceling CMOS LNA with Enhanced Linearity by Using Complementary nMOS and pMOS Configurations. IEEE J. Solid-State Circuits 2017, 1–14. [Google Scholar] [CrossRef]
- Rahman, M.; Harjani, R. A 2.4-GHz, Sub-1-V, 2.8-dB NF, 475-μW Dual-Path Noise and Nonlinearity Cancelling LNA for Ultra-Low-Power Radios. IEEE J. Solid-State Circuits 2018, 53, 1423–1430. [Google Scholar] [CrossRef]
- Wagner, J.; Joram, N.; Lindner, B.; Ellinger, F. A fully integrated, four-element multi-standard beamforming ASIC for 2.4 and 5.8 GHz. In Proceedings of the 2019 European Microwave Conference in Central Europe (EuMCE), Prague, Czech Republic, 13–15 May 2019; pp. 419–422. [Google Scholar]
- Park, J.; Razavi, B. Channel Selection at RF Using Miller Bandpass Filters. Solid-State Circuits IEEE J. 2014, 49, 3063–3078. [Google Scholar] [CrossRef]
- Keehr, E.A.; Hajimiri, A. A Wide-Swing Low-Noise Transconductance Amplifier and the Enabling of Large-Signal Handling Direct-Conversion Receivers. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 30–43. [Google Scholar] [CrossRef]
- Geddada, H.M.; Fu, C.; Silva-Martinez, J.; Taylor, S.S. Wide-Band Inductorless Low-Noise Transconductance Amplifiers With High Large-Signal Linearity. IEEE Trans. Microw. Theory Tech. 2014, 62, 1495–1505. [Google Scholar] [CrossRef]
- Nejdel, A.; Sjoland, H.; Tormanen, M. A Noise-Cancelling Receiver Front-End With Frequency Selective Input Matching. Solid-State Circuits IEEE J. 2015, 50, 1137–1147. [Google Scholar] [CrossRef]
- Ramella, M.; Fabiano, I.; Manstretta, D.; Castello, R. A SAW-Less 2.4GHz Receiver Front-End with 2.4mA Battery Current for SoC Coexistence. IEEE J. Solid-State Circuits 2017, 52, 2292–2305. [Google Scholar] [CrossRef]
- Andrews, C.; Molnar, A.C. A Passive Mixer-First Receiver With Digitally Controlled and Widely Tunable RF Interface. IEEE J. Solid-State Circuits 2010, 45, 2696–2708. [Google Scholar] [CrossRef]
- Friis, H.T. Noise Figures of Radio Receivers. Proc. IRE 1944, 32, 419–422. [Google Scholar] [CrossRef]
- Lee, T.H. The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Goldsmith, A. Wireless Communications, 1st ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Wang, Z.; Giannakis, G. A simple and general parameterization quantifying performance in fading channels. IEEE Trans. Commun. 2003, 51, 1389–1398. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables; Dover Publications, Inc.: New York, NY, USA, 1974. [Google Scholar]
- Brante, G.; Stupia, I.; Souza, R.D.; Vandendorpe, L. Outage Probability and Energy Efficiency of Cooperative MIMO with Antenna Selection. IEEE Trans. Wirel. Commun. 2013, 12, 5896–5907. [Google Scholar] [CrossRef]
- Qualcomm—TDK Joint Venture. SAW RF Filter—B4360 Datasheet; RF360 Europe GmbH: Munchen, Germany, December 2016. [Google Scholar]
- Chen, G.; Hanson, S.; Blaauw, D.; Sylvester, D. Circuit Design Advances for Wireless Sensing Applications. Proc. IEEE 2010, 98, 1808–1827. [Google Scholar] [CrossRef]
Architecture | Ref. | Freq. Range [GHz] | Gain [dB] | Power Consump. [mW] | Noise Figure [dB] |
---|---|---|---|---|---|
LNA | [10] | 0.1–2.2 | 12.3 | 0.4 | 5 |
[11] | 0.1–2 | 17.5 | 21.3 | 3.5 | |
[12] | 2.3–2.5 | 17.4 | 0.48 | 2.8 | |
LNTA | [14] | 0.05–2.5 | 38 | 20 | 2.9 |
[17] | 0.7–3.8 | 47 | 41.88 | 1.6 | |
[18] | 2–2.8 | 43.4 | 4.32 | 7.5 |
Parameter | Description | Value |
---|---|---|
B | Channel bandwidth | 20 MHz |
Link margin | 20 dB | |
Total antenna gain | 5 dBi | |
Carrier frequency | GHz | |
Noise PSD | dBm/Hz | |
Path loss exponent | ||
Target outage probability | ||
R | Spectral efficiency | 1 bit/s/Hz |
Power consumption at the TX | mW [27] | |
Power consumption at the RX | mW [27] | |
Drain efficiency of the PA | [27] | |
m | Nakagami-m fading parameter | 2 |
Architecture | Scheme | Distance | |||||||
---|---|---|---|---|---|---|---|---|---|
50 m | 100 m | 150 m | 200 m | 250 m | 300 m | 350 m | 400 m | ||
LNA [10] | SISO | ||||||||
AS | |||||||||
SVD | |||||||||
LNA [11] | SISO | ||||||||
AS | |||||||||
SVD | |||||||||
LNA [12] | SISO | ||||||||
AS | |||||||||
SVD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junior, E.N.; Theis, G.; Santos, E.L.d.; Mariano, A.A.; Brante, G.; Souza, R.D.; Taris, T. Energy Efficiency Analysis of MIMO Wideband RF Front-End Receivers. Sensors 2020, 20, 7070. https://doi.org/10.3390/s20247070
Junior EN, Theis G, Santos ELd, Mariano AA, Brante G, Souza RD, Taris T. Energy Efficiency Analysis of MIMO Wideband RF Front-End Receivers. Sensors. 2020; 20(24):7070. https://doi.org/10.3390/s20247070
Chicago/Turabian StyleJunior, Eduil Nascimento, Guilherme Theis, Edson Leonardo dos Santos, André Augusto Mariano, Glauber Brante, Richard Demo Souza, and Thierry Taris. 2020. "Energy Efficiency Analysis of MIMO Wideband RF Front-End Receivers" Sensors 20, no. 24: 7070. https://doi.org/10.3390/s20247070
APA StyleJunior, E. N., Theis, G., Santos, E. L. d., Mariano, A. A., Brante, G., Souza, R. D., & Taris, T. (2020). Energy Efficiency Analysis of MIMO Wideband RF Front-End Receivers. Sensors, 20(24), 7070. https://doi.org/10.3390/s20247070