A Miniature Intermittent-Flow Respirometry System with a 3D-Printed, Palm-Sized Zebrafish Treadmill for Measuring Rest and Activity Metabolic Rates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Miniature Intermittent-Flow Respirometry Systems (mIFRS)
2.1.1. 3D-Printed, Palm-Sized Zebrafish Treadmill
2.1.2. A Fiber-Optic Oxygen Sensing System
2.1.3. A Custom-Made PC-Based Control System
2.2. Animals and Housing
2.3. Swimming Performance Protocol
2.4. Cost of Transport (COT)
3. Results and Discussion
3.1. Swimming Ability and Energetic Metabolism of a Single Zebrafish in the mIFRS
3.2. Toxicity Assay of a Single Zebrafish with an Antibacterial Agent
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ali, S.; Champagne, D.L.; Spaink, H.P.; Richardson, M.K. Zebrafish Embryos and Larvae: A New Generation of Disease Models and Drug Screens. Birth Defects Res. C 2011, 93, 115–133. [Google Scholar] [CrossRef]
- Gilbert, M.J.; Zerulla, T.C.; Tierney, K.B. Zebrafish (Danio rerio) as a model for the study of aging and exercise: Physical ability and trainability decrease with age. Exp. Gerontol. 2014, 50, 106–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, J.; Schouman, A.; Lyphout, L.; Cousin, X.; Lefrancois, C. Allometric relationship between body mass and aerobic metabolism in zebrafish Danio rerio. J. Fish Biol. 2014, 84, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Neuzeret, F.; Fabreges, B.; Froc, C.; Bedu, S.; Bally-Cuif, L.; Norton, W.H.J. Inter-Individual and Inter-Strain Variations in Zebrafish Locomotor Ontogeny. PLoS ONE 2013, 8, e70172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rummer, J.L.; Binning, S.A.; Roche, D.G.; Johansen, J.L. Methods matter: Considering locomotory mode and respirometry technique when estimating metabolic rates of fishes. Conserv. Physiol. 2016, 4, cow008. [Google Scholar] [CrossRef] [Green Version]
- Chabot, D.; Steffensen, J.F.; Farrell, A.P. The determination of standard metabolic rate in fishes. J. Fish Biol. 2016, 88, 81–121. [Google Scholar] [CrossRef]
- Penghan, L.Y.; Cao, Z.D.; Fu, S.J. Effect of temperature and dissolved oxygen on swimming performance in crucian carp. Aquat. Biol. 2014, 21, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Rosewarne, P.J.; Wilson, J.M.; Svendsen, J.C. Measuring maximum and standard metabolic rates using intermittent-flow respirometry: A student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers. J. Fish Biol. 2016, 88, 265–283. [Google Scholar] [CrossRef] [Green Version]
- Svendsen, M.B.S.; Bushnell, P.G.; Steffensen, J.F. Design and setup of intermittent-flow respirometry system for aquatic organisms. J. Fish Biol. 2016, 88, 26–50. [Google Scholar] [CrossRef] [Green Version]
- Kline, R.J.; Parkyn, D.C.; Murie, D.J. Empirical Modelling of Solid-blocking Effect in a Blazka Respirometer for Gag, a Large Demersal Reef Fish. Adv. Zool. Botany 2015, 3, 193–202. [Google Scholar] [CrossRef]
- Axton, E.R.; Beaver, L.M.; St Mary, L.; Truong, L.; Logan, C.R.; Spagnoli, S.; Prater, M.C.; Keller, R.M.; Garcia-Jaramillo, M.; Ehrlicher, S.E.; et al. Treatment with Nitrate, but Not Nitrite, Lowers the Oxygen Cost of Exercise and Decreases Glycolytic Intermediates While Increasing Fatty Acid Metabolites in Exercised Zebrafish. J. Nutr. 2019, 149, 2120–2132. [Google Scholar] [CrossRef] [PubMed]
- Messerli, M.; Aaldijk, D.; Haberthur, D.; Ross, H.; Garcia-Poyatos, C.; Sande-Melon, M.; Khoma, O.Z.; Wieland, F.A.M.; Fark, S.; Djonov, V. Adaptation mechanism of the adult zebrafish respiratory organ to endurance training. PLoS ONE 2020, 15, e0228333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, M.C.; Zimmer, A.M.; Perry, S.F. Role of internal convection in respiratory gas transfer and aerobic metabolism in larval zebrafish (Danio rerio). Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 316, R255–R264. [Google Scholar] [CrossRef] [PubMed]
- Mandic, M.; Pan, Y.K.; Gilmour, K.M.; Perry, S.F. Relationships between the peak hypoxic ventilatory response and critical O2 tension in larval and adult zebrafish (Danio rerio). J. Exp. Biol. 2020, 223. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.; Valls, A.; Prats, E.; Bedrossiantz, J.; Orozco, M.; Porta, J.M.; Gomez-Olivan, L.M.; Raldua, D. Further characterization of the zebrafish model of acrylamide acute neurotoxicity: Gait abnormalities and oxidative stress. Sci. Rep. 2019, 9, 7075. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, J. The Effect of Acute Erythromycin Exposure on the Swimming Ability of Zebrafish (Danio rerio) and Medaka (Oryzias latipes). Int. J. Environ. Res. Public Health 2020, 17, 3389. [Google Scholar] [CrossRef]
- Palstra, A.P.; Tudorache, C.; Rovira, M.; Brittijn, S.A.; Burgerhout, E.; van den Thillart, G.E.; Spaink, H.P.; Planas, J.V. Establishing zebrafish as a novel exercise model: Swimming economy, swimming-enhanced growth and muscle growth marker gene expression. PLoS ONE 2010, 5, e14483. [Google Scholar] [CrossRef] [Green Version]
- Suniaga, S.; Rolvien, T.; Vom Scheidt, A.; Fiedler, I.A.K.; Bale, H.A.; Huysseune, A.; Witten, P.E.; Amling, M.; Busse, B. Increased mechanical loading through controlled swimming exercise induces bone formation and mineralization in adult zebrafish. Sci. Rep. 2018, 8, 3646. [Google Scholar] [CrossRef]
- Wakamatsu, Y.; Ogino, K.; Hirata, H. Swimming capability of zebrafish is governed by water temperature, caudal fin length and genetic background. Sci. Rep. 2019, 9, 16307. [Google Scholar] [CrossRef]
- Widrick, J.J.; Gibbs, D.E.; Sanchez, B.; Gupta, V.A.; Pakula, A.; Lawrence, C.; Beggs, A.H.; Kunkel, L.M. An open source microcontroller based flume for evaluating swimming performance of larval, juvenile, and adult zebrafish. PLoS ONE 2018, 13, e0199712. [Google Scholar] [CrossRef]
- Mwaffo, V.; Zhang, P.; Romero Cruz, S.; Porfiri, M. Zebrafish swimming in the flow: A particle image velocimetry study. PeerJ 2017, 5, e4041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhargava, K.C.; Thompson, B.; Malmstadt, N. Discrete elements for 3D microfluidics. Proc. Natl. Acad. Sci. USA 2014, 111, 15013–15018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlton, J. Marine Propellers and Propulsion, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2018. [Google Scholar]
- Grist, S.M.; Chrostowski, L.; Cheung, K.C. Optical Oxygen Sensors for Applications in Microfluidic Cell Culture. Sensors 2010, 10, 9286–9316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.H.; Lin, Y.S.; Wu, C.W.; Wu, C.J. Assessment of the inhibition of Dengue virus infection by carrageenan via real-time monitoring of cellular oxygen consumption rates within a microfluidic device. Biomicrofluidics 2014, 8, 024110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.H.; Huang, K.S.; Yu, C.H.; Gong, H.Y. Metabolic profile analysis of a single developing zebrafish embryo via monitoring of oxygen consumption rates within a microfluidic device. Biomicrofluidics 2013, 7, 64107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.H.; Lin, Y.W. Bioenergetic Health Assessment of a Single Caenorhabditis elegans from Postembryonic Development to Aging Stages via Monitoring Changes in the Oxygen Consumption Rate within a Microfluidic Device. Sensors 2018, 18, 2453. [Google Scholar] [CrossRef] [Green Version]
- Morozov, S.; McCairns, R.J.S.; Merila, J. FishResp: R package and GUI application for analysis of aquatic respirometry data. Conserv. Physiol. 2019, 7, coz003. [Google Scholar] [CrossRef] [Green Version]
- Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio Rerio), 4th ed.; University of Oregon Press: Eugene, OR, USA, 2000. [Google Scholar]
- Verso, L.; Liberzon, A. Background oriented schlieren in a density stratified fluid. Rev. Sci. Instrum. 2015, 86, 103705. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.; Weatherly, L.M.; Luc, R.H.; Dorman, M.T.; Neilson, A.; Ng, R.; Kim, C.H.; Millard, P.J.; Gosse, J.A. Triclosan is a mitochondrial uncoupler in live zebrafish. J. Appl. Toxicol. 2016, 36, 1662–1667. [Google Scholar] [CrossRef]
- Pullaguri, N.; Nema, S.; Bhargava, Y.; Bhargava, A. Triclosan alters adult zebrafish behavior and targets acetylcholinesterase activity and expression. Environ. Toxicol. Pharmacol. 2020, 75, 103311. [Google Scholar] [CrossRef]
Normal | Normal | Triclosan Exposure | |
---|---|---|---|
N | 9 | 8 | 8 |
dpf | 30 | 90 | 90 |
Mass (mg) | 24.8 ± 6 | 121.1 ± 11.6 | 128.05 ± 16.9 |
Body length (mm) | 14.2 ± 0.5 | 25 ± 1.0 | 25.5 ± 1.5 |
SMR (μmol h−1g−1) | 52.81 | 26.55 | 16.38 |
MMR (μmol h−1g−1) | 102.32 | 65.89 | 78.50 |
Ucrit (cm/s) | 3.85 | 16.79 | 7.57 |
Uopt (cm/s) | 3.52 | 15.32 | 5.28 |
COTopt (μmol g−1 m−1) | 0.72 | 0.11 | 0.24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-H.; Tsao, C.-W.; Fang, Y.-H. A Miniature Intermittent-Flow Respirometry System with a 3D-Printed, Palm-Sized Zebrafish Treadmill for Measuring Rest and Activity Metabolic Rates. Sensors 2020, 20, 5088. https://doi.org/10.3390/s20185088
Huang S-H, Tsao C-W, Fang Y-H. A Miniature Intermittent-Flow Respirometry System with a 3D-Printed, Palm-Sized Zebrafish Treadmill for Measuring Rest and Activity Metabolic Rates. Sensors. 2020; 20(18):5088. https://doi.org/10.3390/s20185088
Chicago/Turabian StyleHuang, Shih-Hao, Chia-Wei Tsao, and Yan-Hung Fang. 2020. "A Miniature Intermittent-Flow Respirometry System with a 3D-Printed, Palm-Sized Zebrafish Treadmill for Measuring Rest and Activity Metabolic Rates" Sensors 20, no. 18: 5088. https://doi.org/10.3390/s20185088
APA StyleHuang, S.-H., Tsao, C.-W., & Fang, Y.-H. (2020). A Miniature Intermittent-Flow Respirometry System with a 3D-Printed, Palm-Sized Zebrafish Treadmill for Measuring Rest and Activity Metabolic Rates. Sensors, 20(18), 5088. https://doi.org/10.3390/s20185088