Marine Boundary Layer Height Obtained by New Numerical Regularization Method Based on GPS Radio Occultation Data
Abstract
1. Introduction
2. Data
3. Methods
4. Climate Characteristics of MBLH
4.1. Annual Variation Characteristics
4.2. Seasonal Variation Characteristics
4.3. Interannual Variation Trend in MBLH and a Case Study in the South China Sea
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sullivan, P.P.; McWilliams, J.C.; Moeng, C.-H. A grid nesting method for large-eddy simulation of planetary boundary-layer flows. Bound. Layer Meteorol. 1996, 80, 167–202. [Google Scholar] [CrossRef]
- Thurston, W.; Fawcett, R.J.; Tory, K.J.; Kepert, J.D. Simulating boundary-layer rolls with a numerical weather prediction model. Q. J. R. Meteorol. Soc. 2016, 142, 211–223. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 13. [Google Scholar]
- Basha, G.; Kishore, P.; Ratnam, M.V.; Ravindra Babu, S.; Velicogna, I.; Jiang, J.H.; Ao, C.O. Global climatology of planetary boundary layer top obtained from multi-satellite GPS RO observations. Clim. Dyn. 2019, 52, 2385–2398. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.; Cohen, J.B.; Li, J.; Chen, D.; Xu, H.; Liu, L.; Yin, J.; Hu, K.; Zhai, P. Shift in the Temporal Trend of Boundary Layer Height in China Using Long-Term (1979–2016) Radiosonde Data. Geophys. Res. Lett. 2019, 46, 6080–6089. [Google Scholar] [CrossRef]
- Zhang, Y.; Seidel, D.J.; Zhang, S. Trends in Planetary Boundary Layer Height over Europe. J. Clim. 2013, 26, 10071–10076. [Google Scholar] [CrossRef]
- Dang, R.; Yang, Y.; Li, H.; Hu, X.-M.; Wang, Z.; Huang, Z.; Zhou, T.; Zhang, T. Atmosphere Boundary Layer Height (ABLH) determination under multiple-layer conditions using micro-pulse lidar. Remote Sens. 2019, 11, 263. [Google Scholar] [CrossRef]
- Baars, H.; Ansmann, A.; Engelmann, R.; Althausen, D. Continuous monitoring of the boundary-layer top with lidar. Atmos. Chem. Phys 2008, 8, 7281–7296. [Google Scholar] [CrossRef]
- Beyrich, F. Mixing height estimation from sodar data—A critical discussion. Atmos. Environ. 1997, 31, 3941–3953. [Google Scholar] [CrossRef]
- Bianco, L.; Wilczak, J.M. Convective Boundary Layer Depth: Improved Measurement by Doppler Radar Wind Profiler Using Fuzzy Logic Methods. J. Atmos. Ocean Technol. 2002, 19, 1745–1758. [Google Scholar] [CrossRef]
- Liu, B.; Guo, J.; Gong, W.; Shi, Y.; Jin, S. Boundary Layer Height as Estimated from Radar Wind Profilers in Four Cities in China: Relative Contributions from Aerosols and Surface Features. Remote Sens. 2020, 12, 1657. [Google Scholar] [CrossRef]
- von Engeln, A.; João, T. A planetary boundary layer height climatology derived from ECMWF reanalysis data. J. Clim. 2013, 26, 6575–6590. [Google Scholar] [CrossRef]
- Siuta, D.; West, G.; Stull, R. WRF hub-height wind forecast sensitivity to PBL scheme, grid length, and initial condition choice in complex terrain. Weather. Forecast. 2017, 32, 493–509. [Google Scholar] [CrossRef]
- Terra, R.; Mechoso, C.R.; Arakawa, A. Impact of orographically induced spatial variability in PBL stratiform clouds on climate simulations. J. Clim. 2004, 17, 276–293. [Google Scholar] [CrossRef]
- Basha, G.; Ratnam, M.V. Identification of atmospheric boundary layer height over a tropical station using high-resolution radiosonde refractivity profiles: Comparison with GPS radio occultation measurements. J. Geophys. Res. Atmos. 2009, 114, 114. [Google Scholar] [CrossRef]
- Ao, C.O.; Waliser, D.E.; Chan, S.K.; Li, J.L.; Tian, B.; Xie, F.; Mannucci, A.J. Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res. Atmos. 2012, 117, 117. [Google Scholar] [CrossRef]
- Chan, K.M.; Wood, R. The seasonal cycle of planetary boundary layer depth determined using COSMIC radio occultation data. J. Geophys. Res. Atmos. 2013, 118, 412–422. [Google Scholar] [CrossRef]
- Sokolovskiy, S.V.; Rocken, C.; Lenschow, D.H.; Kuo, Y.-H.; Anthes, R.A.; Schreiner, W.S.; Hunt, D.C. Observing the moist troposphere with radio occultation signals from COSMIC. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Shu-Peng, H.; Liang, P.; Richard, A.A.; Ying-Hwa, K.; Hsiao-Chun, L. Marine Boundary Layer Heights and Their Longitudinal, Diurnal, and Interseasonal Variability in the Southeastern Pacific Using COSMIC, CALIOP, and Radiosonde Data. J. Clim. 2015, 28, 2856–2872. [Google Scholar]
- Chien, F.-C.; Hong, J.-S.; Kuo, Y.-H. The marine boundary layer height over the western north pacific based on GPS radio occultation, island soundings, and numerical models. Sensors 2019, 19, 155. [Google Scholar] [CrossRef]
- Garratt, J. Review: The atmospheric boundary layer. Earth-Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Zhao, W.; Li, H. Midpoint derivative-based closed Newton-Cotes quadrature. Abstr. Apll. Anal. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Kunisch, K.; Zou, J. Iterative choices of regularization parameters in linear Inverse Problems. Inverse Probl. 1998, 14, 1247. [Google Scholar] [CrossRef]
- Lu, S.; Pereverzev, S.V. Multi-parameter regularization and its numerical realization. Numer. Math. 2011, 118, 1–31. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Xiang, J.; Huang, S. Marine Boundary Layer Height Obtained by New Numerical Regularization Method Based on GPS Radio Occultation Data. Sensors 2020, 20, 4762. https://doi.org/10.3390/s20174762
Zhou J, Xiang J, Huang S. Marine Boundary Layer Height Obtained by New Numerical Regularization Method Based on GPS Radio Occultation Data. Sensors. 2020; 20(17):4762. https://doi.org/10.3390/s20174762
Chicago/Turabian StyleZhou, Jianyin, Jie Xiang, and Sixun Huang. 2020. "Marine Boundary Layer Height Obtained by New Numerical Regularization Method Based on GPS Radio Occultation Data" Sensors 20, no. 17: 4762. https://doi.org/10.3390/s20174762
APA StyleZhou, J., Xiang, J., & Huang, S. (2020). Marine Boundary Layer Height Obtained by New Numerical Regularization Method Based on GPS Radio Occultation Data. Sensors, 20(17), 4762. https://doi.org/10.3390/s20174762