Mechanical Properties of Treadmill Surfaces Compared to Other Overground Sport Surfaces
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller, J.R.; Van Hooren, B.; Bishop, C.; Buckley, J.D.; Willy, R.W.; Fuller, J.T. A Systematic Review and Meta-Analysis of Crossover Studies Comparing Physiological, Perceptual and Performance Measures Between Treadmill and Overground Running. Sports Med. 2019, 49, 763–782. [Google Scholar] [CrossRef]
- Colino, E.; Garcia-Unanue, J.; Gallardo, L.; Foster, C.; Lucia, A.; Felipe, J.L. Mechanical Properties of Treadmill Surfaces and Their Effects on Endurance Running. Int. J. sports Physiol. Perform. 2020, 15, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Van Hooren, B.; Fuller, J.T.; Buckley, J.D.; Miller, J.R.; Sewell, K.; Rao, G.; Barton, C.; Bishop, C.; Willy, R.W. Is motorized treadmill running biomechanically comparable to overground running? A systematic review and meta-analysis of cross-over studies. Sports Med. 2020, 50, 785–813. [Google Scholar] [CrossRef]
- Jones, A.M.; Doust, J.H. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J. Sports Sci. 1996, 14, 321–327. [Google Scholar] [CrossRef]
- Lavcanska, V.; Taylor, N.F.; Schache, A.G. Familiarization to treadmill running in young unimpaired adults. Hum. Mov. Sci. 2005, 24, 544–557. [Google Scholar] [CrossRef] [PubMed]
- Pugh, L.G. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. J. Physiol. 1971, 213, 255–276. [Google Scholar] [CrossRef] [PubMed]
- Sassi, A.; Stefanescu, A.; Menaspa, P.; Bosio, A.; Riggio, M.; Rampinini, E. The cost of running on natural grass and artificial turf surfaces. J. Strength Cond. Res. 2011, 25, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Li, H.; Liu, H.; Yu, B. Effects of treadmill cushion and running speed on plantar force and metabolic energy consumption in running. Gait Posture 2019, 69, 79–84. [Google Scholar] [CrossRef]
- Di Michele, R.; Di Renzo, A.M.; Ammazzalorso, S.; Merni, F. Comparison of physiological responses to an incremental running test on treadmill, natural grass, and synthetic turf in young soccer players. J. Strength Cond. Res. 2009, 23, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Butler, R.J.; Crowell III, H.P.; Davis, I.M. Lower extremity stiffness: Implications for performance and injury. Clin. Biomech. 2003, 18, 511–517. [Google Scholar] [CrossRef]
- Dixon, S.J.; Collop, A.C.; Batt, M.E. Surface effects on ground reaction forces and lower extremity kinematics in running. Med. Sci. Sports Exerc. 2000, 32, 1919–1926. [Google Scholar] [CrossRef]
- Hardin, E.C.; van den Bogert, A.J.; Hamill, J. Kinematic adaptations during running: Effects of footwear, surface, and duration. Med. Sci. Sports Exerc. 2004, 36, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Schache, A.G.; Blanch, P.D.; Rath, D.A.; Wrigley, T.V.; Starr, R.; Bennell, K.L. A comparison of overground and treadmill running for measuring the three-dimensional kinematics of the lumbo-pelvic-hip complex. Clin. Biomech. 2001, 16, 667–680. [Google Scholar] [CrossRef]
- Shorten, M.R.; Himmelsbach, J.A. Shock attenuation of sports surfaces, The Engineering of Sport IV. In Proceedings of the 4th International Conference on The Engineering of Sport, Kyoto, 3–6 September 2002; Ujihashi, U., Haake, S.J., Eds.; Blackwell Science: Kyoto, Japan, 2002; pp. 152–159. [Google Scholar]
- International Organization for Standardization. ISO 20957-6:2005. Stationary Training Equipment-Part 6: Treadmills, Additional Specific Safety Requirements and Test Methods. 2014. Available online: https://www.iso.org/standard/39907.html (accessed on 16 June 2020).
- CEN. EN 957-6:2010+A1:2014 Stationary Training Equipment-Part 6: Treadmills, Additional Specific Safety Requirements and Test Methods. 2014. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0054063 (accessed on 16 June 2020).
- ASTM Intenational. ASTM F2106–18. Standard Specification for Motorized Treadmills. 2018. Available online: https://www.astm.org/Standards/F2115.html (accessed on 16 June 2020).
- Smith, J.A.; McKerrow, A.D.; Kohn, T.A. Metabolic cost of running is greater on a treadmill with a stiffer running platform. J. Sports Sci. 2017, 35, 1592–1597. [Google Scholar] [CrossRef]
- Milgrom, C.; Finestone, A.; Segev, S.; Olin, C.; Arndt, T.; Ekenman, I. Are overground or treadmill runners more likely to sustain tibial stress fracture? Br. J. Sports Med. 2003, 37, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Milner, C.E.; Hawkins, J.L.; Aubol, K.G. Tibial Acceleration during Running Is Higher in Field Testing Than Indoor Testing. Med. Sci. sports Exerc. 2020, 52, 1361–1366. [Google Scholar] [CrossRef] [PubMed]
- Smits, J.D. Metatarsophalangeal Joint Mechanics Differ Between Overground and Treadmill Running. Bachelor Thesis, University of Oregon, Eugene, OR, USA, June 2019. Available online: https://scholarsbank.uoregon.edu/xmlui/bitstream/handle/1794/25063/Final_Thesis-Smits.pdf?sequence=1&isAllowed=y2019 (accessed on 16 June 2020).
- Colino, E.; Sánchez-Sánchez, J.; García-Unanue, J.; Ubago-Guisado, E.; Haxaire, P.; Le Blan, A.; Gallardo, L. Validity and reliability of two standard test devices in assessing mechanical properties of different sport surfaces. Polym. Test. 2017, 62, 61–67. [Google Scholar] [CrossRef]
- FIFA. FIFA Quality Programme for Football Turf. Handbook of Test Methods, 2015. International Federation of Association Football. Available online: https://football-technology.fifa.com/media/1238/fqp-handbook-of-test-methods-2015-v31-w-cover.pdf (accessed on 10 June 2020).
- Kerdok, A.E.; Biewener, A.A.; McMahon, T.A.; Weyand, P.G.; Herr, H.M. Energetics and mechanics of human running on surfaces of different stiffnesses. J. Appl. Physiol. 2002, 92, 469–478. [Google Scholar] [CrossRef]
- IAAF. IAAF Track and Runway Synthetic Surface Testing Specifications. In IAAF, Ed. 2016. Available online: https://www.worldathletics.org/search/?q=Track%20and%20Runway%20Synthetic%20Surface (accessed on 10 June 2020).
- Colino, E.; Garcia-Unanue, J.; Van Hooren, B.; Gallardo, L.; Meijer, K.; Lucia, A.; Felipe, J.L. A Proposed Method to Assess the Mechanical Properties of Treadmill Surfaces. Sensors 2020, 20, 2724. [Google Scholar] [CrossRef]
- World Rugby. Rugby Turf Performance Specification. In 2020. Available online: https://playerwelfare.worldrugby.org/?documentid=68 (accessed on 23 June 2020).
- Baroud, G.; Nigg, B.M.; Stefanyshyn, D. Energy storage and return in sport surfaces. Sports Eng. 1999, 2, 173–180. [Google Scholar] [CrossRef]
- Zanetti, E.M.; Bignardi, C.; Franceschini, G.; Audenino, A.L. Amateur football pitches: Mechanical properties of the natural ground and of different artificial turf infills and their biomechanical implications. J. Sports Sci. 2013, 31, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Milani, T.L.; Hennig, E.M.; Riehle, H.J. A comparison of locomotor characteristics during treadmill and overground running. Biomechanics XI-B. Free Univ. Press Amsterdam 1988, 655–659. [Google Scholar]
- Asmussen, M.J.; Kaltenbach, C.; Hashlamoun, K.; Shen, H.; Federico, S.; Nigg, B.M. Force measurements during running on different instrumented treadmills. J. Biomech. 2019, 84, 263–268. [Google Scholar] [CrossRef]
- Parvataneni, K.; Ploeg, L.; Olney, S.J.; Brouwer, B. Kinematic, kinetic and metabolic parameters of treadmill versus overground walking in healthy older adults. Clin. Biomech. 2009, 24, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Schrier, N.M.; Wannop, J.W.; Lewinson, R.T.; Worobets, J.; Stefanyshyn, D. Shoe traction and surface compliance affect performance of soccer-related movements. Footwear Sci. 2014, 6, 69–80. [Google Scholar] [CrossRef]
- Sinclair, J.; Richards, J.; Taylor, P.J.; Edmundson, C.J.; Brooks, D.; Hobbs, S.J. Three-dimensional kinematic comparison of treadmill and overground running. Sports Biomech. 2013, 12, 272–282. [Google Scholar] [CrossRef]
- Hoogkamer, W.; Kipp, S.; Frank, J.H.; Farina, E.M.; Luo, G.; Kram, R. A Comparison of the Energetic Cost of Running in Marathon Racing Shoes. Sports Med. 2018, 48, 1009–1019. [Google Scholar] [CrossRef]
- TenBroek, T.M.; Rodrigues, P.; Murphy, S.; Hamill, J. Cushioning mode and magnitude affect treadmill running kinematics. Footwear Sci. 2011, 3, S157–S159. [Google Scholar] [CrossRef]
- Willwacher, S.; Fischer, K.M.; Rohr, E.; Trudeau, M.B.; Hamill, J.; Bruggemann, G.P. Surface Stiffness and Footwear Affect the Loading Stimulus for Lower Extremity Muscles When Running. J. Strength Cond. Res. 2020. [CrossRef]
- Fletcher, J.R.; MacIntosh, B.R. Running Economy from a Muscle Energetics Perspective. Front. Physiol. 2017, 8, 433. [Google Scholar] [CrossRef]
- Lejeune, T.M.; Willems, P.A.; Heglund, N.C. Mechanics and energetics of human locomotion on sand. J. Exp. Biol. 1998, 201, 2071–2080. [Google Scholar] [PubMed]
- Pinnington, H.C.; Dawson, B. The energy cost of running on grass compared to soft dry beach sand. J. Sci. Med. Sport 2001, 4, 416–430. [Google Scholar] [CrossRef]
- Wang, L.; Hong, Y.; Li, J.X. Muscular Activity of Lower Extremity Muscles Running on Treadmill Compared with Different Overground Surfaces. Am. J. Sports Sci. Med. 2014, 2, 161–165. [Google Scholar] [CrossRef][Green Version]
Group | Brand | Model | Year of Manufacture | N | Code |
---|---|---|---|---|---|
Fit-TR | LifeFitness | Integrity Series 97T | 2011 | 14 | LF97T |
LifeFitness | Integrity Series DX | 2019 | 9 | LFDX | |
Technogym | Jog 500 | 2012 | 5 | TECJog500 | |
Technogym | Jog 700 Excite | 2008 | 12 | TECJog700 | |
Technogym | Runartis | 2018 | 22 | TECRunart | |
Precor | 956i | 2009 | 8 | PRE956i | |
Lab-TR | Technogym | Excite-Med | 2018 | 1 | TECE-M |
HP Cosmos | Pulsar lt 3P | 2004 | 1 | HPPul2004 | |
HP Cosmos | Pulsar lt 3P | 2013 | 1 | HPPul2013 | |
HP Cosmos | Saturn | 2006 | 1 | HPSat | |
HP Cosmos | Venus | 2016 | 1 | HPVen | |
Lode | Valiant 2 Rehab | 2017 | 1 | LODRehab | |
NM-TR | Technogym | Skillmill | 2019 | 1 | TECSkill |
Treadmill (Fit-TR) | Artificial Turf | Track | Group Effect (p-Value and ES) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
SA (%) | 64 | ± | 2 | 62 | ± | 2 Ŧ | 30 | ± | 4 Ŧ.* | p < 0.001, ES = 0.96 |
VD (mm) | 7.6 | ± | 1.3 | 9.3 | ± | 0.4Ŧ | 2.5 | ± | 0.4 Ŧ.* | p < 0.001, ES = 0.87 |
ER (%) | 45 | ± | 11 | 39 | ± | 3Ŧ | 58 | ± | 1 Ŧ.* | p < 0.001, ES = 0.51 |
LF97T (a) | LFDX (b) | TECJOG500 (c) | TECJOG700 (d) | TECRUNART (e) | PRE956I (f) | Group Effect (p-Value and ES) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SA(%) | 67 | ± | 1 c.d.e.f | 68 | ± | 1 c.d.e.f | 62 | ± | 2 | 63 | ± | 2 | 64 | ± | 2 | 63 | ± | 2 | p < 0.001, ES = 0.69 |
VD(mm) | 9.6 | ± | 0.3 b.c.d.e.f | 8.6 | ± | 0.2 c.d.e.f | 7.2 | ± | 0.4 f | 6.5 | ± | 0.4 e | 7.0 | ± | 0.6 f | 6.4 | ± | 0.2 | p < 0.001, ES = 0.90 |
ER(%) | 58 | ± | 3 b.c.d.e.f | 53 | ± | 4 c.d.e.f | 44 | ± | 2 d.f | 39 | ± | 5f | 40 | ± | 2f | 33 | ± | 1 | p < 0.001, ES = 0.89 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colino, E.; Felipe, J.L.; Van Hooren, B.; Gallardo, L.; Meijer, K.; Lucia, A.; Lopez-Fernandez, J.; Garcia-Unanue, J. Mechanical Properties of Treadmill Surfaces Compared to Other Overground Sport Surfaces. Sensors 2020, 20, 3822. https://doi.org/10.3390/s20143822
Colino E, Felipe JL, Van Hooren B, Gallardo L, Meijer K, Lucia A, Lopez-Fernandez J, Garcia-Unanue J. Mechanical Properties of Treadmill Surfaces Compared to Other Overground Sport Surfaces. Sensors. 2020; 20(14):3822. https://doi.org/10.3390/s20143822
Chicago/Turabian StyleColino, Enrique, Jose Luis Felipe, Bas Van Hooren, Leonor Gallardo, Kenneth Meijer, Alejandro Lucia, Jorge Lopez-Fernandez, and Jorge Garcia-Unanue. 2020. "Mechanical Properties of Treadmill Surfaces Compared to Other Overground Sport Surfaces" Sensors 20, no. 14: 3822. https://doi.org/10.3390/s20143822
APA StyleColino, E., Felipe, J. L., Van Hooren, B., Gallardo, L., Meijer, K., Lucia, A., Lopez-Fernandez, J., & Garcia-Unanue, J. (2020). Mechanical Properties of Treadmill Surfaces Compared to Other Overground Sport Surfaces. Sensors, 20(14), 3822. https://doi.org/10.3390/s20143822