Cooperative Full-Duplex V2V-VLC in Rectilinear and Curved Roadway Scenarios
Abstract
:1. Introduction
2. System Model
2.1. Straight Roadway Scenario
2.2. Curved Roadway Scenario
3. BER Analysis
4. Numerical Results and Discussions
4.1. Straight Road Scenario
4.2. Curved Road Scenario (Non-Cooperative Communication)
4.3. Cooperative Communication in the Curved Roadway Scenario
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yu, S.; Shih, O.; Tsai, H.; Wisitpongphan, N.; Roberts, R.D. Smart automotive lighting for vehicle safety. IEEE Commun. Mag. 2013, 51, 50–59. [Google Scholar] [CrossRef]
- Kim, Y.H.; Cahyadi, W.A.; Chung, Y.H. Experimental Demonstration of VLC-Based Vehicle-to-Vehicle Communications Under Fog Conditions. IEEE Photonics J. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Bazzi, A.; Masini, B.M.; Zanella, A.; Calisti, A. Visible light communications as a complementary technology for the internet of vehicles. Comput. Commun. 2016, 93, 39–51. [Google Scholar] [CrossRef]
- Rapson, C.J.; Seet, B.; Chong, P.H.J.; Klette, R. Safety Assessment of Radio Frequency and Visible Light Communication for Vehicular Networks. IEEE Wirel. Commun. 2019, 27, 2–8. [Google Scholar] [CrossRef]
- Uysal, M.; Ghassemlooy, Z.; Bekkali, A.; Kadri, A.; Menouar, H. Visible Light Communication for Vehicular Networking: Performance Study of a V2V System Using a Measured Headlamp Beam Pattern Model. IEEE Veh. Technol. Mag. 2015, 10, 45–53. [Google Scholar] [CrossRef]
- Vieira, M.A.; Vieira, M.; Louro, P.; Vieira, P. Vehicular Visible Light Communication: A road-to-vehicle proof of concept. In Proceedings of the Optical Sensing and Detection V 2018, Strasbourg, France, 23–26 April 2018; Berghmans, F., Mignani, A.G., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10680, pp. 95–104. [Google Scholar]
- Farahneh, H.; Hussain, F.; Fernando, X. Performance analysis of adaptive OFDM modulation scheme in VLC vehicular communication network in realistic noise environment. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 243. [Google Scholar] [CrossRef]
- Căilean, A.; Dimian, M. Toward Environmental-Adaptive Visible Light Communications Receivers for Automotive Applications: A Review. IEEE Sens. J. 2016, 16, 2803–2811. [Google Scholar] [CrossRef]
- Dang, Q.; Yoo, M. Handover Procedure and Algorithm in Vehicle to Infrastructure Visible Light Communication. IEEE Access 2017, 5, 26466–26475. [Google Scholar] [CrossRef]
- Cho, S.; Chen, G.; Coon, J.P. Physical Layer Security in Multiuser VLC Systems with a Randomly Located Eavesdropper. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Shen, W.; Tsai, H. Testing vehicle-to-vehicle visible light communications in real-world driving scenarios. In Proceedings of the 2017 IEEE Vehicular Networking Conference (VNC), Torino, Italy, 27–29 November 2017; pp. 187–194. [Google Scholar]
- Cui, Z.; Yue, P.; Ji, Y. Study of cooperative diversity scheme based on visible light communication in VANETs. In Proceedings of the 2016 International Conference on Computer, Information and Telecommunication Systems (CITS), Kunming, China, 6–8 July 2016; pp. 1–5. [Google Scholar]
- Masini, B.M.; Bazzi, A.; Zanella, A. Vehicular visible light networks with full duplex communications. In Proceedings of the 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples, Italy, 26–28 June 2017; pp. 98–103. [Google Scholar]
- Cuba-Zúñiga, D.; Mafra, S.; Mejía-Salazar, J.; Montejo-Sánchez, S.; Fernandez, E.; Céspedes, S. Visible Light V2V Cooperative Communication Under Environmental Interference. In Proceedings of the XXXVII Brazilian Symposium on Telecommunications and Signal (SBrT 2019), Petrópolis, Brazil, 29 September–2 October 2019. [Google Scholar] [CrossRef]
- Memedi, A.; Tsai, H.; Dressler, F. Impact of Realistic Light Radiation Pattern on Vehicular Visible Light Communication. In Proceedings of the 2017 IEEE Global Communications Conference (GLOBECOM), Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Khan, L.U. Visible light communication: Applications, architecture, standardization and research challenges. Digit. Commun. Netw. 2017, 3, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Viriyasitavat, W.; Boban, M.; Tsai, H. Comparison of Radio Frequency and Visible Light Propagation Channels for Vehicular Communications. IEEE Access 2018, 6, 2634–2644. [Google Scholar] [CrossRef]
- Ndjiongue, A.; Ferreira, H. An overview of outdoor visible light communications. Trans. Emerg. Telecommun. Technol. 2018, 29, e3448. [Google Scholar] [CrossRef]
- Masini, B.M.; Bazzi, A.; Zanella, A. Vehicular Visible Light Networks for Urban Mobile Crowd Sensing. Sensors 2018, 18, 1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abualhoul, M.Y.; Marouf, M.; Shagdar, O.; Nashashibi, F. Platooning control using visible light communications: A feasibility study. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9 October 2013; pp. 1535–1540. [Google Scholar]
- Liu, C.B.; Sadeghi, B.; Knightly, E.W. Enabling Vehicular Visible Light Communication (V2LC) Networks. In Proceedings of the Eighth ACM International Workshop on Vehicular Inter-Networking, Las Vegas, NV, USA, 1 September 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 41–50. [Google Scholar]
- Tomaš, B.; Tsai, H.; Boban, M. Simulating vehicular visible light communication: Physical radio and MAC modeling. In Proceedings of the 2014 IEEE Vehicular Networking Conference (VNC), Paderborn, Germany, 3–5 December 2014; pp. 222–225. [Google Scholar]
- Căilean, A.; Dimian, M. Current Challenges for Visible Light Communications Usage in Vehicle Applications: A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 2681–2703. [Google Scholar] [CrossRef]
- Islim, M.S.; Videv, S.; Safari, M.; Xie, E.; McKendry, J.J.D.; Gu, E.; Dawson, M.D.; Haas, H. The Impact of Solar Irradiance on Visible Light Communications. J. Lightwave Technol. 2018, 36, 2376–2386. [Google Scholar] [CrossRef] [Green Version]
- Laneman, J.N.; Tse, D.N.C.; Wornell, G.W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans. Inf. Theory 2004, 50, 3062–3080. [Google Scholar] [CrossRef]
- Kahn, J.M.; Barry, J.R. Wireless infrared communications. Proc. IEEE 1997, 85, 265–298. [Google Scholar] [CrossRef] [Green Version]
- Marshoud, H.; Sofotasios, P.C.; Muhaidat, S.; Karagiannidis, G.K.; Sharif, B.S. On the Performance of Visible Light Communication Systems With Non-Orthogonal Multiple Access. IEEE Trans. Wirel. Commun. 2017, 16, 6350–6364. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.U.; Ullah, S.; Chong, P.H.J.; Yongchareon, S.; Komosny, D. Visible Light Communication: A System Perspective Overview and Challenges. Sensors 2019, 19, 1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, H. IEEE Standard for Local and Metropolitan Area Networks—Part 15.7: Short-Range Wireless Optical Communication Using Visible Light; IEEE: Burnaby, BC, Canada, 2011; pp. 1–309. [Google Scholar]
- Ghassemlooy, Z.; Alves, L.N.; Zvanovec, S.; Khalighi, M.A. Visible Light Communications: Theory and Applications; CRC Press Taylor & Francis: Boca Raton, FL, USA, 2017; p. 273. [Google Scholar]
- Luo, P.; Ghassemlooy, Z.; Minh, H.L.; Bentley, E.; Burton, A.; Tang, X. Performance analysis of a car-to-car visible light communication system. Appl. Opt. 2015, 54, 1696–1706. [Google Scholar] [CrossRef]
- Alam, M.; Ferreira, J.; Fonseca, J. Intelligent Transportation Systems: Dependable Vehicular Communications for Improved Road Safety; Springer: Cham, Switzerland, 2016; p. 52. [Google Scholar]
Parameter | Symbol | Value |
---|---|---|
FOV of the receiver | /6 rad | |
Half value angle of an LED | /12 rad | |
Internal refractive index | n | 1.5 |
Area of incidence at receiver | 1 cm2 | |
Filter Transmission Coefficient | T | 1 |
Detector Responsivity | 0.56 A/W | |
Ambient Temperature | 300 K | |
Open loop channel gain | G | 10 |
FET Transconductance | 30 mS | |
Fixed PD Capacitance/area | 112 pF/cm2 | |
Noise Bandwidth Factor | 0.562, 0.0868 | |
Background Noise Power | 16 dBm | |
LED Power | 0.3 W | |
Horizontal Inclination angle | 0 rad | |
Horizontal Inclination angle | rad | |
Vertical Inclination angle | /2 rad | |
Code Rate | 20 Mbps | |
Electronic Charge | q | C |
FET Channel noise factor | 1.5 | |
Boltzmann Constant | J/K | |
System Bandwidth | B | 20 MHz |
Number of bits | N | 2400 bits |
Node Positions | ||||
---|---|---|---|---|
25° | 53.75 m | 38.50 m | 48.23 m | 59.03 m |
30° | 53.75 m | 40.00 m | 47.40 m | 60.62 m |
35° | 53.75 m | 41.50 m | 46.38 m | 62.22 m |
40° | 53.75 m | 42.90 m | 45.24 m | 63.71 m |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuba-Zúñiga, D.J.; Mafra, S.B.; Mejía-Salazar, J.R. Cooperative Full-Duplex V2V-VLC in Rectilinear and Curved Roadway Scenarios. Sensors 2020, 20, 3734. https://doi.org/10.3390/s20133734
Cuba-Zúñiga DJ, Mafra SB, Mejía-Salazar JR. Cooperative Full-Duplex V2V-VLC in Rectilinear and Curved Roadway Scenarios. Sensors. 2020; 20(13):3734. https://doi.org/10.3390/s20133734
Chicago/Turabian StyleCuba-Zúñiga, Diego J., Samuel B. Mafra, and J. Ricardo Mejía-Salazar. 2020. "Cooperative Full-Duplex V2V-VLC in Rectilinear and Curved Roadway Scenarios" Sensors 20, no. 13: 3734. https://doi.org/10.3390/s20133734
APA StyleCuba-Zúñiga, D. J., Mafra, S. B., & Mejía-Salazar, J. R. (2020). Cooperative Full-Duplex V2V-VLC in Rectilinear and Curved Roadway Scenarios. Sensors, 20(13), 3734. https://doi.org/10.3390/s20133734