Measurements of Aerodynamic Interference of a Hybrid Aircraft with Multirotor Propulsion †
Abstract
:1. Introduction
2. Research Object
3. Research Methodology
● S = 0.9498 m2 | – rotor disc area, |
● R = 0.55 m | – reference length to determine the coefficients of the moment of aerodynamic forces. |
4. Research Results
5. Analysis of Results
- the difference is highly significant,
- the difference is significant,
- the difference is negligible,
- the difference is statistically insignificant.
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De la Cierva, J.; Rose, D. Wings of Tomorrow; Warren&Putnam: Brewer, ME, USA, 1931. [Google Scholar]
- De la Cierva, C.A. Juan de la Cierva—A Universal Spaniard, Constructions Aeronáticas S.A; CASA: Seville, Spain, 1998. [Google Scholar]
- Nikolsky, A.A. Helicopter Design Theory; Princeton University Press: Princeton, NJ, USA, 1945. [Google Scholar]
- Ruchała, P.; Stryczniewicz, W.; Czyż, Z.; Łusiak, T. The aerodynamic characteristics of an gyroplane fuselage for various angles incidence of horizontal stabilizers. Trans. Inst. Aviat. 2015, 4, 96–107. (In Polish) [Google Scholar]
- Leishman, J.G. The Development of the Autogiro: A Technical Perspective. Paper presented at the Hofstra University Conference from Autogiro to Gyroplane—The Past, Present and Future of an Aviation History; Hofstra University: Hempstead, NY, USA, 2003. [Google Scholar]
- Coton, F.; Smrcek, L.; Patek, Z. Aerodynamic Characteristics of a Gyroplane Configuration. J. Aircr. 1998, 35, 274–279. [Google Scholar] [CrossRef]
- Houston, S.S. Identification of Gyroplane Lateral/Directional Stability and Control Characteristics from Flight Test. Proc. Inst. Mech. Eng. 1998, 212, 271–285. [Google Scholar] [CrossRef]
- Thomson, D.G.; Houston, S.S. Experimental and Theoretical Studies of Autogyro Flight Dynamics. In 24th International Congress of Aeronautical Sciences; ICAS: Yokohama, Japan, 2004; pp. 1–10. [Google Scholar]
- Houston, S.S. Identification of Autogyro Longitudinal Stability and Control Characteristics. J. Guid. Control Dyn. 1998, 21, 391–399. [Google Scholar] [CrossRef]
- Houston, S.S. Longitudinal Stability of Gyroplanes. Aeronaut. J. 1996, 100, 1–6. [Google Scholar]
- Houston, S.S. Validation of a Rotorcraft Mathematical Model for Autogyro Simulation. Aiaa J. Aircr. 2000, 37, 203–209. [Google Scholar] [CrossRef]
- Shin, B.; Kim, H.Y. An Exploratory Study on the Speed Limit of Compound Gyroplane (1): Aerodynamic Analysis of Rotor and Airframe. J. Korean Soc. Aeronaut. Space Sci. 2015, 43, 971–977. [Google Scholar] [CrossRef] [Green Version]
- Goetzendorf-Grabowski, T.; Figat, M. Aerodynamic and stability analysis of personal vehicle in tandem-wing configuration. Proc. Inst. Mech. Eng. Part G 2017, 231, 2146–2162. [Google Scholar] [CrossRef]
- Haertig, J.; Havermann, M.; Rey, C.; George, A. Particle image velocimetry in Mach 3.5 and 4.5 shock-tunnel flows. AIAA J. 2002, 40, 1056–1060. [Google Scholar] [CrossRef]
- Leishman, J.G. Principles of Helicopter Aerodynamics; Cambridge University Press: New York, NY, USA, 2000; pp. 36–71. [Google Scholar]
- Prouty, R.W. Helicopter Performance. Stability and Control; Krieger Publishing Company: Malabar, FL, USA, 1990; pp. 143–146. [Google Scholar]
- Seddon, J.; Newman, S. Basic Helicopter Aerodynamics, 3rd ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Carter, J., Jr. CarterCopter—A High Technology Gyroplane. In Proceedings of the American Helicopter Society Vertical Lift Aircraft Design Conference, San Francisco, CA, USA, 19–21 January 2000. [Google Scholar]
- Kim, H.Y.; Sheen, D.J.; Park, S.O. Numerical simulation of autorotation in forward flight. J. Aircr. 2009, 46, 1642–1648. [Google Scholar] [CrossRef]
- Payne, P.R. Helicopter Dynamics and Aerodynamics; Pitman&Sons: London, UK, 1959. [Google Scholar]
- Rapp, H.; Wedemeyer, P.; Teuber, C. Measurement of In-Flight Rotor Blade Loads of an Autogyro. In Proceedings of the 26th European Rotorcraft Forum, The Hague, The Netherlands, 26–29 September 2000. [Google Scholar]
- Taamallah, S.A. Qualitative Introduction to the Vortex-Ring-State, Autorotation, and Optimal Utorotation, Technical Report NLR-TP-2010-282; National Aerospace Laboratory NLR: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Yomchinda, T.; Horn, J.F.; Langelaan, J.W. Flight Path Planning for Descent-phase Helicopter Autorotation. AIAA Guid. Navig. Control Conf. 2011. [Google Scholar] [CrossRef]
- Yomchinda, T. Real-time Path Planning and Autonomous Control for Helicopter Autorotation. Ph.D. Thesis, The Pennsylvania State University, State College, PA, USA, 2013. [Google Scholar]
- Choudhury, S.; Scherer, S.; Singh, S. RRT*-AR: Sampling-Based Alternate Routes Planning with Applications to Autonomous Emergency Landing of a Helicopter. IEEE Int. Conf. Robot. Autom. 2013. [Google Scholar] [CrossRef] [Green Version]
- Holsten, J.; Loechelt, S.; Alles, W. Autonomous Autorotation Flights of Helicopter UAVs to Known Landing Sites; AHS International Annual Forum, American Helicopter Society International: Phoenix, AZ, USA, 2010. [Google Scholar]
- Taamallah, S. Optimal Autorotation with Obstacle Avoidance for A Small-Scale Flybarless Helicopter UAV. AIAA Guid. Navig. Control Conf. 2012. [Google Scholar] [CrossRef]
- Takahashi, M.D.; Abershitz, A.; Rubinets, R.; Whalley, M.S. Evaluation of Safe Landing Area Determination Algorithms for Autonomous Rotorcraft Using Site Benchmarking. J. Am. Helicopter Soc. 2013, 58, 1–13. [Google Scholar] [CrossRef]
- Glauert, H. A General Theory of the Autogiro. J. R. Aeronaut. Soc. 1927, 31, 483–508. [Google Scholar] [CrossRef]
- Stepniewski, W.Z.; Keys, C.N. Rotary-Wing Aerodynamics; Courier Corporation: New York, NY, USA, 1984. [Google Scholar]
- Xiang, C.; Yang, X.; Xu, B.; Han, H.; Liu, L. Numerical Simulation of Unsteady Flow past Autorotating Rotor in Gyroplane Level Flight. In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS) Denver Marriott Tech Center, Denver, CO, USA, 9–12 June 2015. [Google Scholar]
- Wheatley, J.B.; Bioletti, C. Wind Tunnel Tests of a 10-Foot Diameter Gyroplane Rotor; NACA Rept. 536; National Advisory Committee for Aeronautics. Langley Aeronautical Lab.: Hampton, VA, USA, 1936.
- Wheatley, J.B. An Aerodynamic Analysis of the Autogiro Rotor with a Comparison Between Calculated and Experimental Results; NACA Rept. 487; National Advisory Committee for Aeronautics. Langley Aeronautical Lab.: Hampton, VA, USA, 1935.
- Wheatley, J.B. An Analysis of the Factors That Determine the Periodic Twist of an Autogiro Rotor Blade, with a Comparison of Predicted and Measured Results; NACA Rept. 600; National Advisory Committee for Aeronautics. Langley Aeronautical Lab.: Hampton, VA, USA, 1937.
- Wheatley, J.B. An Analytical and Experimental Study of the Effect of Periodic Blade Twist on the Thrust, Torque, and Flapping Motion of an Autogiro Rotor; NACA Rept. 591; National Advisory Committee for Aeronautics. Langley Aeronautical Lab.: Hampton, VA, USA, 1937.
- Wheatley, J.B. The Aerodynamic Analysis of the Gyroplane Rotating-Wing System; NACA Technical Note 492; National Advisory Committee for Aeronautics. Langley Aeronautical Lab.: Hampton, VA, USA, 1934.
- Wheatley, J.B. Wing Pressure Distribution and Rotor Blade Motion of an Autogiro as Determined in Flight; NACA Rept. 475; National Advisory Committee for Aeronautics. Langley Aeronautical Lab.: Hampton, VA, USA, 1933.
- McCormick, B.W. A Numerical Analysis of Autogyro Performance. Biennial International Powered Lift Conference and Exhibit; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2002. [Google Scholar]
- Szczeciński, S. Aerospace Technology, Illustrated Flight Lexicon; Transport and Communication Publishers: Warsaw, Poland, 1988. (In Polish) [Google Scholar]
- Houston, S.; Thomson, D. On the modelling of gyroplane flight dynamics. Prog. Aerosp. Sci. 2007, 88, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Krysztofiak, G. Aeromechanic dimensionless quantities in the wind tunnel tests of the rotors of the rotary-wing aircraft models. Eng. Modeling 2011, 42, 217–226. (In Polish) [Google Scholar]
- Krysztofiak, G. Description of research methodology of main rotors wind tunnel tests in terms of autorotation teetering autogyro’s rotor modelling. Trans. Inst. Aviat. 2011, 219, 227–233. (In Polish) [Google Scholar]
- Figat, M. Aerodynamics analysis of the main rotor influence on the static stability of the gyroplane. Aircr. Eng. Aerosp. Technol. 2017, 89, 663–670. [Google Scholar] [CrossRef]
- Bassett, K.; Carriveau, R.; Ting, D.S.T. 3D printed wind turbines part 1: Design considerations and rapid manufacture potential. Sustain. Energy Technol. Assess. 2015, 11, 186–193. [Google Scholar] [CrossRef]
- Conner, B.P.; Manogharan, G.P.; Martof, A.N.; Rodomsky, M.; Rodomsky, C.M.; Jordan, D.C.; Limperos, J.W. Making sense of 3-D printing: Creating a map of additive manufacturing products and services. Addit. Manuf. 2014, 1, 64–76. [Google Scholar] [CrossRef]
- Skawiński, I.; Goetzendorf-Grabowski, T. FDM 3D printing method utility assessment in small RC aircraft design. Aircr. Eng. Aerosp. Technol. 2019, 91, 865–872. [Google Scholar] [CrossRef]
- Ruchała, P. System measuring and checking control wind tunnel T-1. Trans. Inst. Aviat. 2013, 232, 63–78. [Google Scholar] [CrossRef]
Px | Py | Pz | Mx | My | Mz | |
---|---|---|---|---|---|---|
Average relative error (% of range) | −0.007 | −0.001 | −0.001 | 0.001 | 0.000 | −0.001 |
Average relative error (% of current force) | 0.131 | 0.467 | 0.114 | 0.072 | 0.122 | 0.422 |
Angle of Attack α [°] | Drag Force Px | Lift Force Pz | Pitching Moment My | |||
---|---|---|---|---|---|---|
K1/K3 | K2/K3 | K1/K3 | K2/K3 | K1/K3 | K2/K3 | |
0 | 0.153 | 0.019 | 0.043 | 0.057 | 0.037 | 0.058 |
−2 | 0.060 | 0.001 | 0.029 | 0.058 | 0.045 | 0.058 |
−4 | 0.061 | 0.081 | 0.051 | 0.060 | 0.042 | 0.055 |
−6 | - | - | - | - | - | - |
−8 | 0.041 | 0.307 | 0.054 | 0.060 | 0.002 | 0.054 |
−10 | 0.693 | 0.453 | 0.042 | 0.060 | 0.025 | 0.053 |
−12 | 0.286 | 0.658 | 0.056 | 0.060 | 0.041 | 0.059 |
−13 | 0.695 | 0.811 | 0.057 | 0.060 | 0.153 | 0.057 |
−13.5 | 0.192 | 0.991 | 0.059 | 0.060 | 0.031 | 0.059 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czyż, Z.; Wendeker, M. Measurements of Aerodynamic Interference of a Hybrid Aircraft with Multirotor Propulsion. Sensors 2020, 20, 3360. https://doi.org/10.3390/s20123360
Czyż Z, Wendeker M. Measurements of Aerodynamic Interference of a Hybrid Aircraft with Multirotor Propulsion. Sensors. 2020; 20(12):3360. https://doi.org/10.3390/s20123360
Chicago/Turabian StyleCzyż, Zbigniew, and Mirosław Wendeker. 2020. "Measurements of Aerodynamic Interference of a Hybrid Aircraft with Multirotor Propulsion" Sensors 20, no. 12: 3360. https://doi.org/10.3390/s20123360
APA StyleCzyż, Z., & Wendeker, M. (2020). Measurements of Aerodynamic Interference of a Hybrid Aircraft with Multirotor Propulsion. Sensors, 20(12), 3360. https://doi.org/10.3390/s20123360