Noise Suppression for GPR Data Based on SVD of Window-Length-Optimized Hankel Matrix
Abstract
:1. Introduction
2. Methodology
2.1. Denoising Method Based on SVD of the Hankel Matrix
2.2. Optimization Method of Window Length
2.3. Selection Method of Singular Values
3. Results and Discussion
3.1. Synthetic Example 1
3.2. Synthetic Example 2
3.3. Synthetic Example 3
3.4. Synthetic Example 4
3.5. Field Measurements 1
3.6. Field Measurements 2
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jol, H. Ground Penetrating Radar: Theory and Applications; Elsevier Science: Amsterdam, The Netherlands, 2009; pp. 595–604. [Google Scholar]
- Dong, Z.; Ye, S.; Gao, Y.; Fang, G.; Zhang, X.; Xue, Z.; Zhang, T. Rapid detection methods for asphalt pavement thicknesses and defects by a vehicle-mounted ground penetrating radar (GPR) system. Sensors 2016, 16, 2067. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Forte, E.; Pipan, M.; Tian, G. Ground penetrating radar (GPR) attribute analysis for archaeological prospection. J. Appl. Geophys. 2013, 97, 107–117. [Google Scholar]
- Chen, C.S.; Jeng, Y. GPR investigation of the near-surface geology in a geothermal river valley using contemporary data decomposition techniques with forward simulation modeling. Geothermics 2016, 64, 439–454. [Google Scholar] [CrossRef]
- Manandhar, A.; Torrione, P.A.; Collins, L.M.; Morton, K.D. Multiple-instance hidden Markov model for GPR-based landmine detection. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1737–1745. [Google Scholar] [CrossRef]
- Giannakis, I.; Giannopoulos, A.; Warren, C. A Realistic FDTD Numerical Modeling Framework of Ground Penetrating Radar for Landmine Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 37–51. [Google Scholar] [CrossRef]
- Gurbuz, A. Determination of Background Distribution for Ground-Penetrating Radar Data. IEEE Geosci. Remote Sens. Lett. 2012, 9, 544–548. [Google Scholar]
- Vitebskiy, S.; Carin, L.; Ressler, M.A.; Le, F.H. Ultra-wideband, short-pulse ground-penetrating radar: Simulation and measurement. IEEE Trans. Geosci. Remote Sens. 1997, 35, 762–772. [Google Scholar] [CrossRef]
- Baili, J.; Lahouar, S.; Hergli, M.; Al-Qadi, I.L.; Besbes, K. GPR signal de-noising by discrete wavelet transform. Ndt E Int. 2009, 42, 696–703. [Google Scholar] [CrossRef]
- Javadi, M.; Ghasemzadeh, H. Wavelet analysis for ground penetrating radar applications: A case study. J. Geophys. Eng. 2017, 14, 1189–1202. [Google Scholar] [CrossRef]
- Kim, J.H.; Cho, S.J.; Yi, M.J. Removal of ringing noise in GPR data by signal processing. Geosci. J. 2007, 11, 75–81. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, Y. Interference removal for autofocusing of GPR data from RC bridge decks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1145–1151. [Google Scholar] [CrossRef]
- Chen, C.S.; Jeng, Y. Nonlinear data processing method for the signal enhancement of GPR data. J. Appl. Geophys. 2011, 75, 113–123. [Google Scholar] [CrossRef]
- Li, J.; Liu, C.; Zeng, Z.F.; Chen, L.N. GPR signal denoising and target extraction with the CEEMD method. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1615–1619. [Google Scholar]
- Song, X.; Xiang, D.; Zhou, K.; Su, Y. Fast Prescreening for GPR Antipersonnel Mine Detection via Go Decomposition. IEEE Geosci. Remote Sens. Lett. 2019, 16, 15–19. [Google Scholar] [CrossRef]
- Tivive, F.H.C.; Bouzerdoum, A.; Abeynayake, C. GPR Target Detection by Joint Sparse and Low-Rank Matrix Decomposition. IEEE Trans. Geosci. Remote Sens. 2019, 5, 2583–2595. [Google Scholar] [CrossRef]
- Song, X.; Xiang, D.; Zhou, K.; Su, Y. Improving RPCA-based clutter suppression in GPR detection of antipersonnel mines. IEEE Geosci. Remote Sens. Lett. 2017, 8, 1338–1342. [Google Scholar] [CrossRef]
- Abujarad, F.; Nadim, G.; Omar, A. Clutter reduction and detection of landmine objects in ground penetrating radar data using singular value decomposition (SVD). In Proceedings of the 3rd International Workshop on Advanced Ground Penetrating Radar, Delft, The Netherlands, 2–3 May 2005; pp. 37–42. [Google Scholar]
- Garcia-Fernandez, M.; Alvarez-Lopez, Y.; Arboleya-Arboleya, A.; Las-Heras, F.; Rodriguez-Vaqueiro, Y.; Gonzalez-Valdes, B.; Pino-Garcia, A. SVD-based clutter removal technique for GPR. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation, San Diego, SA, USA, 9–14 July 2017; pp. 2369–2370. [Google Scholar]
- Giannakis, I.; Xu, S.; Aubry, P.; Yarovoy, A.; Sala, J. Signal processing for landmine detection using ground penetrating radar. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 7442–7445. [Google Scholar]
- Cagnoli, B.; Ulrych, T.J. Singular value decomposition and wavy reflections in ground-penetrating radar images of base surge deposits. J. Appl. Geophys. 2001, 48, 175–182. [Google Scholar] [CrossRef]
- Liu, C.; Song, C.; Lu, Q. Random noise de-noising and direct wave eliminating based on SVD method for ground penetrating radar signals. J. Appl. Geophys. 2017, 144, 125–133. [Google Scholar] [CrossRef]
- Shen, J.Q.; Yan, H.Z.; Hu, C.Z. Auto-selected rule on principal component analysis in ground penetrating radar signal denoising. Chin. J. Radio 2010, 25, 83–87. [Google Scholar]
- Riaz, M.M.; Ghafoor, A. Ground penetrating radar image enhancement using singular value decomposition. In Proceedings of the IEEE International Symposium on Circuits and Systems, Beijing, China, 19–23 May 2013; pp. 2388–2391. [Google Scholar]
- Zhao, X.; Ye, B. Similarity of signal processing effect between Hankel matrix-based SVD and wavelet transform and its mechanism analysis. Mech. Syst. Signal. Process. 2009, 23, 1062–1075. [Google Scholar] [CrossRef]
- Lee, K.C.; Ou, J.S.; Fang, M.C. Application of SVD noise-reduction technique to PCA based radar target recognition. Prog. Electromagn. Res. 2008, 81, 447–459. [Google Scholar]
- Qiao, Z.; Pan, Z. SVD principle analysis and fault diagnosis for bearings based on the correlation coefficient. Meas. Sci. Technol. 2015, 26, 085014. [Google Scholar] [CrossRef]
- Golafshan, R.; Sanliturk, K.Y. SVD and Hankel matrix based de-noising approach for ball bearing fault detection and its assessment using artificial faults. Mech. Syst. Signal. Process. 2016, 70, 36–50. [Google Scholar] [CrossRef]
- Bi, W.; Zhao, Y.; An, C.; Hu, S. Clutter elimination and random-noise denoising of GPR signals using an SVD method based on the Hankel matrix in the local frequency domain. Sensors 2018, 18, 3422. [Google Scholar] [CrossRef] [PubMed]
- Kilundu, B.; Chiementin, X.; Dehombreux, P. Singular spectrum analysis for bearing defect detection. J. Vib. Acoust. 2011, 133, 051007. [Google Scholar] [CrossRef]
- Warren, C.; Giannopoulos, A.; Giannakis, I. gprMax: Open source software to simulate electromagnetic wave propagation for ground penetrating radar. Comp. Phys. Commun. 2016, 209, 163–170. [Google Scholar] [CrossRef]
- Wang, J.G.; Li, J.; Liu, Y.Y. An improved method for determining effective order rank of SVD denoising. J. Vib. Shock 2014, 33, 176–180. [Google Scholar]
- Maloney, J.G.; Smith, G.S. A Study of Transient Radiation from the Wu-King Resistive Monopole—Fdtd Analysis and Experimental Measurements. IEEE Trans. Antennas Propag. 1993, 41, 668–676. [Google Scholar] [CrossRef]
Method | SNR (dB) | Processing Time (s) | Amount of RAM Memory (MB) |
---|---|---|---|
SVD method based on local energy ratio rule | 4.23 | 1.9 | 71 |
Wavelet transform method | 7.08 | 2.31 | 39 |
Proposed method | 7.55 | 4.17 | 99 |
Method | SNR (dB) | Processing Time (s) | Amount of RAM Memory (MB) |
---|---|---|---|
SVD method based on local energy ratio rule | 5.6 | 0.78 | 48 |
Wavelet transform method | 7.03 | 0.92 | 17 |
Proposed method | 7.42 | 1.43 | 53 |
Method | SNR (dB) | Processing Time (s) | Amount of RAM Memory (MB) |
---|---|---|---|
SVD method based on local energy ratio rule | 0.94 | 2.16 | 75 |
Wavelet transform method | 2.1 | 2.41 | 51 |
Proposed method | 4.21 | 4.19 | 101 |
Method | SNR (dB) | Processing Time (s) | Amount of RAM Memory (MB) |
---|---|---|---|
SVD method based on local energy ratio rule | 0.02 | 1.94 | 74 |
Wavelet transform method | 0.59 | 2.64 | 53 |
Proposed method | 2.05 | 4.15 | 102 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, W.; Luo, Y.; Yang, Y.; Huang, Y. Noise Suppression for GPR Data Based on SVD of Window-Length-Optimized Hankel Matrix. Sensors 2019, 19, 3807. https://doi.org/10.3390/s19173807
Xue W, Luo Y, Yang Y, Huang Y. Noise Suppression for GPR Data Based on SVD of Window-Length-Optimized Hankel Matrix. Sensors. 2019; 19(17):3807. https://doi.org/10.3390/s19173807
Chicago/Turabian StyleXue, Wei, Yan Luo, Yue Yang, and Yujin Huang. 2019. "Noise Suppression for GPR Data Based on SVD of Window-Length-Optimized Hankel Matrix" Sensors 19, no. 17: 3807. https://doi.org/10.3390/s19173807
APA StyleXue, W., Luo, Y., Yang, Y., & Huang, Y. (2019). Noise Suppression for GPR Data Based on SVD of Window-Length-Optimized Hankel Matrix. Sensors, 19(17), 3807. https://doi.org/10.3390/s19173807