Development of an Automatic Polarization Raman LiDAR for Aerosol Monitoring over Complex Terrain
Abstract
:1. Introduction
2. System Configuration
2.1. Transmitter
2.2. Receiver
2.2.1. Telescope
2.2.2. Spectroscopic Filter
2.3. Detectors and DAQ System
3. Receiver Optimization and Corrections
3.1. Polarization Correction
3.2. Overlap Correction
3.3. Data Homogenization and Error Estimation
4. Performance of the LiDAR System
4.1. Cloud Properties
4.2. Aerosol Properties
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bucci, S.; Cristofanelli, P.; Decesari, S.; Marinoni, A.; Sandrini, S.; Größ, J.; Wiedensohler, A. Vertical distribution of aerosol optical properties in the Po Valley during the 2012 summer campaigns. Atmos. Chem. Phys. 2018, 18, 5371–5389. [Google Scholar] [CrossRef] [Green Version]
- Lang, M.N.; Gohm, A.; Wagner, J. The impact of embedded valleys on daytime pollution transport over a mountain range. Atmos. Chem. Phys. 2015, 15, 11981–11998. [Google Scholar] [CrossRef] [Green Version]
- Henne, S.; Furger, M.; Nyeki, S.; Steinbacher, M.; Neininger, B.; De Wekker, S.; Dommen, J.; Spichtinger, N.; Stohl, A.; Prévôt, A. Quantification of topographic venting of boundary layer air to the free troposphere. Atmos. Chem. Phys. 2004, 4, 497–509. [Google Scholar] [CrossRef] [Green Version]
- Whiteman, C.D. Mountain Meteorology: Fundamentals and Applications; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Mole, M.; Wang, L.; Stanič, S.; Bergant, K.; Eichinger, W.E.; Ocaña, F.; Strajnar, B.; Škraba, P.; Vučković, M.; Willis, W.B. LiDAR measurements of Bora wind effects on aerosol loading. J. Quant. Spectrosc. Radiat. Transf. 2017, 188, 39–45. [Google Scholar] [CrossRef]
- Wang, L.; Stanič, S.; Bergant, K.; Eichinger, W.; Močnik, G.; Drinovec, L.; Vaupotič, J.; Miler, M.; Gosar, M.; Gregorič, A. Retrieval of Vertical Mass Concentration Distributions—Vipava Valley Case Study. Remote Sens. 2019, 11, 106. [Google Scholar] [CrossRef]
- Yoshino, M. Local Wind Bora; University of Tokyo Press: Tokyo, Japan, 1976. [Google Scholar]
- Wang, L.; Stanič, S.; Eichinger, W.; Močnik, G.; Drinovec, L.; Gregorič, A. Investigation of Aerosol Properties and Structures in Two Representative Meteorological Situations over the Vipava Valley Using Polarization Raman LiDAR. Atmosphere 2019, 10, 128. [Google Scholar] [CrossRef]
- Müller, D.; Wagner, F.; Wandinger, U.; Ansmann, A.; Wendisch, M.; Althausen, D.; von Hoyningen-Huene, W. Microphysical particle parameters from extinction and backscatter LiDAR data by inversion with regularization: experiment. Appl. Opt. 2000, 39, 1879–1892. [Google Scholar] [CrossRef]
- Müller, D.; Mattis, I.; Wandinger, U.; Ansmann, A.; Althausen, D.; Stohl, A. Raman LiDAR observations of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Sugimoto, N.; Lee, C. Characteristics of dust aerosols inferred from LiDAR depolarization measurements at two wavelengths. Appl. Opt. 2006, 45, 7468–7474. [Google Scholar] [CrossRef]
- Tanré, D.; Bréon, F.M.; Deuzé, J.L.; Dubovik, O.; Ducos, F.; François, P.; Goloub, P.; Herman, M.; Lifermann, A.; Waquet, F. Remote Sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission. Atmos. Meas. Tech. 2011, 4, 1383–1395. [Google Scholar] [CrossRef]
- Mamouri, R.E.; Ansmann, A. Potential of polarization/Raman LiDAR to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles. Atmos. Meas. Tech. 2017, 10, 3403–3427. [Google Scholar] [CrossRef]
- Stachlewska, I.; Samson, M.; Zawadzka, O.; Harenda, K.; Janicka, L.; Poczta, P.; Szczepanik, D.; Heese, B.; Wang, D.; Borek, K.; et al. Modification of local urban aerosol properties by long-range transport of biomass burning aerosol. Remote Sens. 2018, 10, 412. [Google Scholar] [CrossRef]
- Papagiannopoulos, N.; Mona, L.; Amodeo, A.; D’Amico, G.; Gumà Claramunt, P.; Pappalardo, G.; Alados-Arboledas, L.; Guerrero-Rascado, J.; Amiridis, V.; Kokkalis, P.; et al. An automatic observation-based aerosol typing method for EARLINET. Atmos. Chem. Phys. 2018, 18, 15879–15901. [Google Scholar] [CrossRef] [Green Version]
- Engelmann, R.; Kanitz, T.; Baars, H.; Heese, B.; Althausen, D.; Skupin, A.; Wandinger, U.; Komppula, M.; Stachlewska, I.; Amiridis, V.; et al. The automated multiwavelength Raman polarization and water-vapor LiDAR PollyXT: the neXT generation. Atmos. Meas. Tech. 2016, 9, 1767–1784. [Google Scholar] [CrossRef]
- Freudenthaler, V.; Linné, H.; Chaikovski, A.; Rabus, D.; Groß, S. EARLINET LiDAR quality assurance tools. Atmos. Meas. Tech. Discuss. 2018, 2018, 1–35. [Google Scholar] [CrossRef]
- Althausen, D.; Engelmann, R.; Baars, H.; Heese, B.; Ansmann, A.; Müller, D.; Komppula, M. Portable Raman LiDAR PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization. J. Atmos. Ocean. Technol. 2009, 26, 2366–2378. [Google Scholar] [CrossRef]
- Klett, J.D. LiDAR calibration and extinction coefficients. Appl. Opt. 1983, 22, 514–515. [Google Scholar] [CrossRef] [PubMed]
- Ansmann, A.; Riebesell, M.; Weitkamp, C. Measurement of atmospheric aerosol extinction profiles with a Raman LiDAR. Opt. Lett. 1990, 15, 746–748. [Google Scholar] [CrossRef]
- Whiteman, D.N. Examination of the traditional Raman LiDAR technique. II. Evaluating the ratios for water vapor and aerosols. Appl. Opt. 2003, 42, 2593–2608. [Google Scholar] [CrossRef]
- Müller, D.; Ansmann, A.; Mattis, I.; Tesche, M.; Wandinger, U.; Althausen, D.; Pisani, G. Aerosol-type-dependent LiDAR ratios observed with Raman LiDAR. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Engelmann, R.; Freudenthaler, V.; Groß, S. Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization LiDARs during Saharan Mineral Dust Experiment 2008. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Di, H.; Hua, H.; Cui, Y.; Hua, D.; He, T.; Wang, Y.; Yan, Q. Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization LiDAR in Xi’an, China. J. Quant. Spectrosc. Radiat. Transf. 2017, 188, 28–38. [Google Scholar] [CrossRef]
- BenZvi, S.; Cester, R.; Chiosso, M.; Connolly, B.; Filipčič, A.; Garcia, B.; Grillo, A.; Guarino, F.; Horvat, M.; Iarlori, M.; et al. The LiDAR system of the Pierre Auger Observatory. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 574, 171–184. [Google Scholar] [CrossRef]
- Alvarez, J.; Vaughan, M.; Hostetler, C.; Hunt, W.; Winker, D. Calibration technique for polarization-sensitive LiDARs. J. Atmos. Ocean. Technol. 2006, 23, 683–699. [Google Scholar] [CrossRef]
- Freudenthaler, V. About the effects of polarising optics on LiDAR signals and the Delta 90 calibration. Atmos. Meas. Tech. 2016, 9, 4181–4255. [Google Scholar] [CrossRef]
- Wandinger, U.; Ansmann, A. Experimental determination of the LiDAR overlap profile with Raman LiDAR. Appl. Opt. 2002, 41, 511–514. [Google Scholar] [CrossRef]
- Anderson, N.; Beenson, R.; Erdogan, T. Angle-tuned thin-film interference filters for spectral imaging. Opt. Photonics News 2011, 11, 12–13. [Google Scholar]
- Reichardt, J.; Baumgart, R.; McGee, T. Three-signal method for accurate measurements of depolarization ratio with LiDAR. Appl. Opt. 2003, 42, 4909–4913. [Google Scholar] [CrossRef]
- Freudenthaler, V.; Esselborn, M.; Wiegner, M.; Heese, B.; Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Wirth, M.; Fix, A.; et al. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B 2009, 61, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Di, H.; Hua, D.; Yan, L.; Hou, X.; Wei, X. Polarization analysis and corrections of different telescopes in polarization LiDAR. Appl. Opt. 2015, 54, 389–397. [Google Scholar] [CrossRef]
- Bravo-Aranda, J.; Belegante, L.; Freudenthaler, V.; Alados-Arboledas, L.; Nicolae, D.; Granados-Muñoz, M.; Guerrero-Rascado, J.; Amodeo, A.; D’Amico, G.; Engelmann, R.; et al. Assessment of LiDAR depolarization uncertainty by means of a polarimetric LiDAR simulator. Atmos. Meas. Tech. 2016, 9, 4935. [Google Scholar] [CrossRef]
- Kovalev, V.A.; Eichinger, W.E. Elastic LiDAR: Theory, Practice, and Analysis Methods; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Fernald, F.G. Analysis of atmospheric LiDAR observations- Some comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef]
- Lolli, S.; Welton, E.J.; Campbell, J.R. Evaluating light rain drop size estimates from multiwavelength micropulse LiDAR network profiling. J. Atmos. Ocean. Technol. 2013, 30, 2798–2807. [Google Scholar] [CrossRef]
- Willis, W.B.; Eichinger, W.E.; Prueger, J.H.; Hapeman, C.J.; Li, H.; Buser, M.D.; Hatfield, J.L.; Wanjura, J.D.; Holt, G.A.; Torrents, A.; et al. LiDAR method to estimate emission rates from extended sources. J. Atmos. Ocean. Technol. 2017, 34, 335–345. [Google Scholar] [CrossRef]
- Baars, H.; Ansmann, A.; Engelmann, R.; Althausen, D. Continuous monitoring of the boundary-layer top with LiDAR. Atmos. Chem. Phys. 2008, 8, 7281–7296. [Google Scholar] [CrossRef]
- Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. Spectral dependence of backscattering coefficient of mixed phase clouds over West Africa measured with two-wavelength Raman polarization LiDAR: Features attributed to ice-crystals corner reflection. J. Quant. Spectrosc. Radiat. Transf. 2017, 202, 74–80. [Google Scholar] [CrossRef]
- Basart, S.; Pérez, C.; Nickovic, S.; Cuevas, E.; Baldasano, J. Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean and the Middle East. Tellus B Chem. Phys. Meteorol. 2012, 64, 18539. [Google Scholar] [CrossRef]
- Stein, A.; Draxler, R.; Rolph, G.; Stunder, J.; Cohen, M.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Kanitz, T.; Ansmann, A.; Engelmann, R.; Althausen, D. North-south cross sections of the vertical aerosol distribution over the Atlantic Ocean from multiwavelength Raman/polarization LiDAR during Polarstern cruises. J. Geophys. Res. Atmos. 2013, 118, 2643–2655. [Google Scholar] [CrossRef]
- Groß, S.; Tesche, M.; Freudenthaler, V.; Toledano, C.; Wiegner, M.; Ansmann, A.; Althausen, D.; Seefeldner, M. Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman LiDAR measurements during SAMUM 2. Tellus B 2011, 63, 706–724. [Google Scholar] [CrossRef]
Transmitter | ||
---|---|---|
Laser | Q-smart 450 | Big Sky Ultra |
Wavelength | 355 nm | 1064 nm |
Pulse duration | 5 ns | 8 ns |
Laser energy | 130 mJ | 40 mJ |
Beam diameter | 6.5 mm | 3 mm |
Repetition rate | 10 Hz | 20 Hz |
Divergence | 0.5 mrad (maximum) | 0.7 mrad |
Beam expander (T %) | 3× | 5× |
PBS (T/T) | 2000:1 | / |
steering mirror (T) | >99% | >99% |
Receiver | ||
Hamamatsu PMT H1949-50 | ||
Detectors | Hamamatsu PMT H2341-50 | |
EG&G APD C30954/5E | ||
Data acquisition | ||
Transient recorder | 5× Licel TR40-160 | |
Data storage and processing | C++ code/ROOT under Linux |
Cassegrain Telescope | Borosilicate Window | ||
---|---|---|---|
Diameter 600 mm | f/8 | Size 1 m | thickness 5 mm |
collimator lens | folding mirror | T %/90% (355/1064 nm) | inclination 30 |
Spectroscopic system | |||
BS 1 | BS 2 | ||
T/T(< 650 nm) | >95.0% | T/T(345–395 nm) | >95.0%/90.0% |
R/R(>650 nm) | >97.0% | R/R(400–415 nm) | >97.0% |
BS 3 | PBS | ||
T/(345–365 nm) | >95.0%/90.0% | T/T(355 nm) | 95.0%/0.5% |
R/R(385–395 nm) | >97.0% | R/R(355 nm) | 99.5%/5.0% |
IF 1 | IF 2 | ||
Central WL | 1064 nm | Central WL | 407.7 nm |
Bandwidth | 0.6 nm | Bandwidth | 5.2 nm |
Peak T | 25.0% | Peak T | 66.9% |
IF 3 | IF 4 | ||
Central WL | 386.5 nm | Central WL | 355 nm |
Bandwidth | 4.8 nm | Bandwidth | 1.0 nm |
Peak T | 65.0% | Peak T | 55.0% |
Aspherical lens | HWP | ||
Focal Length | 25 mm | Central WL | 355 nm |
Diameter | 25 mm | Rotation angle resolution | 1 |
Transmitter | ||
Laser | Polarization | |
Misalignment angle | ||
Beam expander | Effective diattenuation | |
Unpolarized transmission | 90% | |
Steering mirror | Effective retardance | |
Borosilicate window | Effective diattenuation | |
Receiver | ||
Borosilicate window | Effective diattenuation | |
folding mirror | Effective retardance | |
Spectroscopic system | Effective diattenuation | |
Misalignment angle | ||
HWP | Misalignment angle | |
0.5% | ||
PBS | 95% | |
99.5% | ||
5% |
Trigger Delay | P-Mie | S-Mie | N | HO | IR-Mie |
---|---|---|---|---|---|
Analog (m) | 45 | 45 | 52.5 | 41.25 | 41.25 |
PC (m) | 3.75 | 3.75 | 7.5 | 3.75 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Stanič, S.; Eichinger, W.; Song, X.; Zavrtanik, M. Development of an Automatic Polarization Raman LiDAR for Aerosol Monitoring over Complex Terrain. Sensors 2019, 19, 3186. https://doi.org/10.3390/s19143186
Wang L, Stanič S, Eichinger W, Song X, Zavrtanik M. Development of an Automatic Polarization Raman LiDAR for Aerosol Monitoring over Complex Terrain. Sensors. 2019; 19(14):3186. https://doi.org/10.3390/s19143186
Chicago/Turabian StyleWang, Longlong, Samo Stanič, William Eichinger, Xiaoquan Song, and Marko Zavrtanik. 2019. "Development of an Automatic Polarization Raman LiDAR for Aerosol Monitoring over Complex Terrain" Sensors 19, no. 14: 3186. https://doi.org/10.3390/s19143186
APA StyleWang, L., Stanič, S., Eichinger, W., Song, X., & Zavrtanik, M. (2019). Development of an Automatic Polarization Raman LiDAR for Aerosol Monitoring over Complex Terrain. Sensors, 19(14), 3186. https://doi.org/10.3390/s19143186