Random-Noise Denoising and Clutter Elimination of Human Respiration Movements Based on an Improved Time Window Selection Algorithm Using Wavelet Transform
Abstract
:1. Introduction
- The signal to noise and clutter ratio (SNCR) of the received UWB pulses is improved using an improved filter.
- Based on the distance estimate, the region of interest (ROI) containing VS signals is defined to reduce the data size and improve the system efficiency.
- To obtain the respiration frequency more accurately, the time window selection algorithm is proposed to remove the random noise.
2. Vital Sign Model
3. VS Detection Algorithm
3.1. Clutter Suppression
3.2. SNR Improvement
3.3. TOA Estimation
3.4. Frequency Estimation
3.4.1. Data Reduction
3.4.2. Noise Removal
3.4.3. Spectral Analysis
4. Data Acquisition
4.1. UWB Impulse Radar
4.2. Experimental Setup
5. Experimental Results
5.1. Vital Sign Estimation Outdoors
5.2. VS Estimation Indoors
5.3. Actuator Signal Estimation
5.4. Estimation at Different Azimuth Angles
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kranjec, K.; Beguš, S.; Drnovšek, J.; Gersak, G. Novel methods for noncontact heart rate measurement: A feasibility study. IEEE Trans. Instrum. Meas. 2014, 63, 838–847. [Google Scholar] [CrossRef]
- Zhao, H.; Hong, H.; Sun, L.; Li, Y.; Li, C.; Zhu, X. Noncontact physiological dynamics detection using low-power digital-IF Doppler radar. IEEE Trans. Instrum. Meas. 2017, 66, 1780–1788. [Google Scholar] [CrossRef]
- Kazemi, S.; Ghorbani, A.; Amindavar, H.; Morgan, D.R. Vital-sign extraction using bootstrap-based generalized warblet transform in heart and respiration monitoring radar system. IEEE Trans. Instrum. Meas. 2016, 65, 255–263. [Google Scholar] [CrossRef]
- Khan, F.; Sung, H.C. A detailed algorithm for vital sign monitoring of a stationary/non-stationary human through ir-uwb radar. Sensors 2017, 17, 290. [Google Scholar] [CrossRef]
- Leem, S.K.; Faheem, K.; Sung, H.C. Vital Sign Monitoring and Mobile Phone Usage Detection Using IR-UWB Radar for Intended Use in Car Crash Prevention. Sensors 2017, 17, 1240. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Bolic, M.; Dajani, H.; Groza, V.; Batkin, I.; Rajan, S. Measurement of heart rate variability using an oscillometric blood pressure monitor. IEEE Trans. Instrum. Meas. 2010, 59, 2575–2590. [Google Scholar] [CrossRef]
- Fanucci, L.; Saponara, S.; Bacchillone, T.; Donati, M.; Barba, T.; Sanchez-Tato, I.; Carmona, C. Sensing devices and sensor signal processing for remote monitoring of vital signs in CHF patients. IEEE Trans. Instrum. Meas. 2013, 62, 553–569. [Google Scholar] [CrossRef]
- Gu, C.; Li, R.; Zhang, H.; Fung, A.Y.C.; Torres, C.; Jiang, S.B.; Li, C. Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy. IEEE Trans. Biomed. Eng. 2012, 59, 3117–3123. [Google Scholar]
- Chen, K.M.; Huang, Y.; Zhang, J.; Norman, A. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier. IEEE Trans. Biomed. Eng. 2000, 47, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Hafner, N.; Drazen, J.C.; Lubecke, V.W. Fish heart rate monitoring by body-contact Doppler radar. IEEE Sens. J. 2012, 13, 408–414. [Google Scholar] [CrossRef]
- Li, J.; Liu, L.; Zeng, Z.; Liu, F. Advanced signal processing for vital sign extraction with applications in UWB radar detection of trapped victims in complex environments. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 783–791. [Google Scholar]
- Wang, Z.; Zhang, H.; Lu, T.; Gulliver, A. Cooperative RSS-based Localization in Wireless Sensor Networks Using Relative Error Estimation and Semidefinite Programming. IEEE T. Veh. Technol. 2018. [Google Scholar] [CrossRef]
- Hu, W.; Zhao, Z.; Wang, Y.; Zhang, H.; Lin, F. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor. IEEE Trans. Biomed. Eng. 2014, 61, 725–735. [Google Scholar]
- Astola, J.T.; Egiazarian, K.O.; Khlopov, G.I.; Khomenko, S.I.; Kurbatov, I.V.; Morozov, V.Y.; Totsky, A.V. Application of bispectrum estimation for time-frequency analysis of ground surveillance Doppler radar echo signals. IEEE Trans. Instrum. Meas. 2008, 57, 1949–1957. [Google Scholar] [CrossRef]
- Lee, J.S.; Nguyen, C.; Scullion, T. A novel, compact, low-cost, impulse ground-penetrating radar for nondestructive evaluation of pavements. IEEE Trans. Instrum. Meas. 2004, 53, 1502–1509. [Google Scholar] [CrossRef]
- JalaliBidgoli, F.; Moghadami, S.; Ardalan, S. A compact portable microwave life-detection device for finding survivors. IEEE Embed. Syst. Lett. 2016, 8, 10–13. [Google Scholar] [CrossRef]
- Gennarelli, G.; Ludeno, G.; Soldovieri, F. Real-time through-wall situation awareness using a microwave Doppler radar sensor. Remote Sens. 2016, 8, 621. [Google Scholar] [CrossRef]
- Guan, S.; Rice, J.A.; Li, C.; Gu, C. Automated DC offset calibration strategy for structural health monitoring based on portable CW radar sensor. IEEE Trans. Instrum. Meas. 2014, 63, 3111–3118. [Google Scholar] [CrossRef]
- Kuutti, J.; Paukkunen, M.; Aalto, M.; Eskelinen, P.; Sepponen, R.E. Evaluation of a Doppler radar sensor system for vital signs detection and activity monitoring in a radio-frequency shielded room. Measurement 2015, 68, 135–142. [Google Scholar] [CrossRef]
- Droitcour, A.D.; Boric-Lubecke, O.; Lubecke, V.M.; Lin, J. Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring. IEEE Trans. Microw. Theory Tech. 2004, 52, 838–848. [Google Scholar] [CrossRef]
- Wang, F.K.; Horng, T.S.; Peng, K.C.; Jau, J.K.; Li, J.Y.; Chen, C.C. Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation. IEEE Trans. Microw. Theory Tech. 2011, 59, 3577–3587. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Barrowes, B. Through-wall bio-radiolocation with UWB impulse radar-Observation, simulation and signal extraction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 791–798. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Xie, H.; Barrowes, B.; Bagtzoglou, A.C. Numerical simulation of UWB impulse radar vital sign detection at an earthquake disaster site. Ad Hoc Netw. 2014, 13, 34–41. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Chen, L.; Huangfu, J.; Li, C.; Ran, L. Noncontact distance and amplitude-independent vibration measurement based on an extended DACM algorithm. IEEE Trans. Instrum. Meas. 2014, 63, 145–153. [Google Scholar] [CrossRef]
- Li, Z.; Li, W.; Lv, H.; Zhang, Y.; Jing, X.; Wang, J. A novel method for respiration-like clutter cancellation in life detection by dual-frequency IR-UWB radar. IEEE Trans. Microw. Theory Tech. 2013, 61, 2086–2092. [Google Scholar] [CrossRef]
- Ren, L.; Wang, H.; Naishadham, K.; Kilic, O.; Fathy, A.E. Phase-based methods for heart rate detection using UWB impulse Doppler radar. IEEE Trans. Microw. Theory Tech. 2016, 64, 3319–3331. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Ye, S.; Fang, G.; Gulliver, T.A. Improved denoising method for through-wall vital sign detection using UWB impulse radar. Digit. Signal. Process. 2018, 74, 72–93. [Google Scholar] [CrossRef]
- Nezirovíc, A.; Yarovoy, A.G.; Ligthart, L.P. Signal processing for improved detection of trapped victims using UWB radar. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2005–2014. [Google Scholar] [CrossRef]
- Lv, H.; Qi, F.; Zhang, Y.; Jiao, T.; Liang, F.; Li, Z.; Wang, J. Improved detection of human respiration using data fusion based on a multistatic UWB radar. Remote Sens. 2016, 8, 773. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Gulliver, T.A.; Fang, G.; Ye, S. An improved algorithm for through-wall target detection using ultra-wideband impulse radar. IEEE Access 2017, 5, 22101–22118. [Google Scholar] [CrossRef]
- Liang, X.; Wang, Y.; Wu, S.; Gulliver, T.A. Experimental Study of Wireless Monitoring of Human Respiratory Movements Using UWB Impulse Radar Systems. Sensors 2018, 18, 3065. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wu, S.; Chen, C.; Chen, J.; Fang, G. A novel method for automatic detection of trapped victims by ultrawideband radar. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3132–3142. [Google Scholar] [CrossRef]
- Xie, Y.; Fang, G. Equi-amplitude tracing algorithm based on base-band pulse signal in vital sign detecting. Electron. Inf. Technol. 2009, 31, 1132–1135. [Google Scholar]
- Hu, W.; Zhao, Z.; Wang, Y.; Zhang, H.; Lin, F. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor. IEEE Trans. Biomed. Eng. 2014, 61, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Tan, K.; Xia, Z.; Chen, J. Improved human respiration detection method via ultra-wideband radar in through-wall or other similar conditions. IET Radar Sonar Navig. 2016, 10, 468–476. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, S.; Chen, C.; Chen, J.; Fang, G. Vital sign detection method based on multiple higher order cumulant for ultra-wideband radar. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1254–1265. [Google Scholar] [CrossRef]
- Hu, X.; Jin, T. Short-range vital signs sensing based on EEMD and CWT using IR-UWB radar. Sensors 2016, 16, 2025. [Google Scholar] [CrossRef]
- Li, C.; Lin, J. Random body movement cancellation in Doppler radar vital sign detection. IEEE Trans. Microw. Theory Tech. 2008, 56, 3143–3152. [Google Scholar]
- Liang, X.; Deng, J.; Zhang, H.; Gulliver, T.A. Ultra-Wideband Impulse Radar Through-Wall Detection of Vital Signs. Sci. Rep. 2018, 8, 13367. [Google Scholar] [CrossRef]
- Naishadham, K.; Piou, J.E. A robust state space model for the characterization of extended returns in radar target signatures. IEEE Trans. Antennas Propag. 2008, 56, 1742–1751. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. A 2004, 460, 1597–1611. [Google Scholar] [CrossRef]
- Yang, Y.; Fathy, A.E. Development and implementation of a real-time see-through-wall radar system based on FPGA. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1270–1280. [Google Scholar] [CrossRef]
- Antoni, J. The spectral kurtosis: A useful tool for characterising non-stationary signals. Mech. Syst. Signal Process. 2006, 20, 282–307. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Lu, T.; Gulliver, T.A. Extreme learning machine for 60 GHz millimetre wave positioning. IET Commun. 2017, 11, 483–489. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Lu, T.; Gulliver, T.A. Energy detector based TOA estimation for MMW systems using machine learning. Telecommun. Syst. 2017, 64, 417–427. [Google Scholar] [CrossRef]
- Li, Y.B.; Xu, M.Q.; Wei, Y.; Huang, W. Health condition monitoring and early fault diagnosis of bearings using SDF and intrinsic characteristic-scale decomposition. IEEE Trans. Instrum. Meas. 2016, 65, 2174–2189. [Google Scholar] [CrossRef]
- Jurjevcic, B.; Senegacnik, A.; Drobnic, B.; Kuštrin, I. The characterization of pulverized-coal pneumatic transport using an array of intrusive electrostatic sensors. IEEE Trans. Instrum. Meas. 2016, 64, 3434–3443. [Google Scholar] [CrossRef]
- Thongpanja, S.; Phinyomark, A.; Quaine, F.; Laurillau, Y.; Limsakul, C.; Phukpattaranont, P. Probability density functions of stationary surface EMG signals in noisy environments. IEEE Trans. Instrum. Meas. 2016, 65, 1547–1557. [Google Scholar] [CrossRef]
- Parchami, M.; Zhu, W.P.; Champagne, B.; Plourde, E. Recent developments in speech enhancement in the short-time Fourier transform domain. IEEE Circ. Syst. Mag. 2016, 16, 45–77. [Google Scholar] [CrossRef]
- Xing, F.J.; Chen, H.W.; Xie, S.Z.; Yao, J. Ultrafast three-dimensional surface imaging based on short-time Fourier transform. IEEE Photonic Technol. Lett. 2015, 27, 2264–2267. [Google Scholar] [CrossRef]
- Zhang, Y.; Candra, P.; Wang, G.A.; Xia, T. 2-D entropy and short-time Fourier transform to leverage GPR data analysis efficiency. IEEE Trans. Instrum. Meas. 2015, 64, 103–111. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Cheng, X.; Lu, Z.Y.; Gu, D.G. SOC estimation of lithium-ion batteries with AEKF and wavelet transform matrix. IEEE Trans. Power Electr. 2017, 32, 7626–7634. [Google Scholar] [CrossRef]
- Shi, J.; Liu, X.P.; Sha, X.J.; Zhang, Q.; Zhang, N. A sampling theorem for fractional wavelet transform with error estimates. IEEE Trans. Signal Process. 2017, 65, 4797–4811. [Google Scholar] [CrossRef]
- Urbina-Salas, I.; Razo-Hernandez, J.R.; Granados-Lieberman, D.; Valtierra-Rodriguez, M.; Torres-Fernandez, J.E. Instantaneous power quality indices based on single-sideband modulation and wavelet packet-Hilbert transform. IEEE Trans. Instrum. Meas. 2017, 66, 1021–1031. [Google Scholar] [CrossRef]
- Coppola, L.; Liu, Q.; Buso, S.; Boroyevich, D.; Bell, A. Wavelet transform as an alternative to the short-time Fourier transform for the study of conducted noise in power electronics. IEEE Trans. Ind. Electron. 2008, 55, 880–887. [Google Scholar] [CrossRef]
- Wójcicki, K.; Milacic, M.; Stark, A.; Lyons, J. Exploiting conjugate symmetry of the short-time Fourier spectrum for speech enhancement. IEEE Signal Process. Lett. 2008, 15, 461–464. [Google Scholar] [CrossRef]
- Barros, J.; Diego, R.I.; de Apraiz, M. Applications of wavelet transform for analysis of harmonic distortion in power systems: A review. IEEE Trans. Instrum. Meas. 2012, 61, 2604–2611. [Google Scholar] [CrossRef]
- Yan, Z.H.; Tao, T.; Jiang, Z.W.; Wang, H. Discrete frequency slice wavelet transform. Mech. Syst. Signal Process. 2017, 96, 385–392. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Lyu, T.; Xu, L.; Cao, C.; Gulliver, T.A. Ultra-wide band impulse radar for life detection using wavelet packet decomposition. Phys. Commun. 2018, 4, 1–20. [Google Scholar] [CrossRef]
- Yin, WF.; Yang, XZ.; Li, L.; Zhang, L.; Kitsuwan, N.; Shinkuma, R.; Oki, E. Self-adjustable domain adaptation in personalized ECG monitoring integrated with IR-UWB radar. Biomed. Signal Process. 2019, 47, 75–87. [Google Scholar] [CrossRef]
- Liu, L.; Fang, G. A novel UWB sampling receiver and its applications for impulse GPR systems. IEEE Geosci. Remote Sens. Lett. 2010, 7, 690–693. [Google Scholar] [CrossRef]
- Liang, X.; Lv, T.; Zhang, H.; Gao, Y.; Fang, G. Through-wall human being detection using UWB impulse radar. EURASIP J. Wirel. Commun. 2018, 2018, 1–17. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
center frequency | 400 MHz |
transmitted signal amplitude | 50 V |
pulse repeat frequency | 600 KHz |
number of averaged values (NA) | 30 |
time window | 124 ns |
number of samples (M) | 4092 |
input bandwidth of the Analog to Digital Converter (ADC) | 2.3 GHz |
ADC sampling rate | 500 MHz |
ADC sample size | 12 bits |
receiver dynamic range | 72 dB |
Subject | Gender | Height (cm) | Weight (kg) | Parameter | 6 m | 9 m | 11 m |
---|---|---|---|---|---|---|---|
I | Female | 158 | 48 | Frequency (Hz) | 0.26 | 0.31 | 0.31 |
SNR (dB) | −4.92 | −7.56 | −8.29 | ||||
II | Female | 163 | 54 | Frequency (Hz) | 0.31 | 0.31 | 0.26 |
SNR (dB) | −7.08 | −10.6 | −11.0 | ||||
III | Male | 178 | 84 | Frequency (Hz) | 0.37 | 0.31 | 0.37 |
SNR (dB) | −6.52 | −9.52 | −12.9 | ||||
IV | Male | 182 | 76 | Frequency (Hz) | 0.37 | 0.31 | 0.37 |
SNR (dB) | −7.12 | −9.48 | −11.3 |
Method | Parameter | 6 m | 9 m | 11 m |
---|---|---|---|---|
CFAR | Range Error (m) | 4.36 | 6.72 | 9.54 |
Frequency (Hz) | 0.10 | 0.72 | 0.46 | |
SNR (dB) | −8.22 | −12.86 | −15.26 | |
Proposed | Range Error (m) | 0.12 | 0.17 | 0.11 |
Frequency (Hz) | 0.25 | 0.31 | 0.31 | |
SNR (dB) | −4.91 | −7.55 | −8.28 | |
MHOC | Range Error (m) | 2.43 | 1.56 | 7.25 |
Frequency (Hz) | 0.45 | 0.52 | 0.44 | |
SNR (dB) | −6.85 | −9.58 | −12.35 | |
AM | Range Error (m) | 5.46 | 4.67 | 3.98 |
Frequency (Hz) | 0.12 | 0.74 | 0.63 | |
SNR (dB) | 0.84 | −3.69 | −6.59 |
Subject | Gender | Height (cm) | Method | Parameter | 7 m | 10 m | 12 m |
---|---|---|---|---|---|---|---|
I | Female | 158 | Proposed | Frequency (Hz) | 0.37 | 0.31 | 0.31 |
Range Error (m) | 0.04 | 0.05 | 0.08 | ||||
SNR (dB) | −4.87 | −6.76 | −10.4 | ||||
II | Female | 163 | FFT+ Window | Frequency (Hz) | 0.14 | 0.20 | 0.20 |
Range Error (m) | 0.15 | 0.27 | 11.7 | ||||
SNR (dB) | −9.08 | −13.7 | −15.6 | ||||
IV | Male | 182 | FFT | Frequency (Hz) | 11.7 | 11.7 | 11.7 |
Range Error (m) | 6.70 | 9.70 | 11.7 | ||||
SNR (dB) | −29.4 | −31.9 | −32.2 |
Method | Parameter | 7 m | 10 m | 12 m |
---|---|---|---|---|
Proposed | Frequency (Hz) | 0.35 | 0.32 | 0.33 |
Deviation | 0.66% | 0.33% | 0.24% | |
Range Error (m) | 0.026 | 0.043 | 0.040 | |
FFT+Window | Frequency (Hz) | 0.37 | 0.37 | 0.12 |
Deviation | 11% | 11% | 64% | |
Range Error (m) | 0.23 | 0.27 | 11.9 | |
AM | Frequency (Hz) | 0.34 | 0.34 | 0.34 |
Deviation | 2.5 % | 2.5 % | 2.5 | |
Range Error (m) | 0.40 | 0.37 | 8.70 | |
CFAR | Frequency (Hz) | 0.37 | 0.37 | 0.43 |
Deviation | 11% | 11% | 28% | |
Range Error (m) | 0.30 | 0.32 | 11.7 | |
MHOC | Frequency (Hz) | 0.11 | 0.11 | 0.08 |
Deviation | 65% | 65% | 73% | |
Range Error (m) | 0.47 | 0.62 | 0.47 |
Method | Parameter | 30° | 60° |
---|---|---|---|
MHOC | Frequency (Hz) | 0.37 | 0.26 |
Deviation | 11% | 23% | |
Range Error (m) | 0.51 | 5.27 | |
AM | Frequency (Hz) | 0.34 | 0.74 |
Deviation | 2.5% | 122% | |
Range Error (m) | 13.73 | 13.73 | |
FFT + Window | Frequency (Hz) | 0.14 | 0.14 |
Deviation | 57% | 57% | |
Range Error (m) | 5.56 | 2.81 | |
Proposed | Frequency (Hz) | 0.37 | 0.37 |
Deviation | 11% | 11% | |
Range Error (m) | 0.10 | 0.10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikhsarmast, F.M.; Lyu, T.; Liang, X.; Zhang, H.; Gulliver, T.A. Random-Noise Denoising and Clutter Elimination of Human Respiration Movements Based on an Improved Time Window Selection Algorithm Using Wavelet Transform. Sensors 2019, 19, 95. https://doi.org/10.3390/s19010095
Shikhsarmast FM, Lyu T, Liang X, Zhang H, Gulliver TA. Random-Noise Denoising and Clutter Elimination of Human Respiration Movements Based on an Improved Time Window Selection Algorithm Using Wavelet Transform. Sensors. 2019; 19(1):95. https://doi.org/10.3390/s19010095
Chicago/Turabian StyleShikhsarmast, Farnaz Mahmoudi, Tingting Lyu, Xiaolin Liang, Hao Zhang, and Thomas Aaron Gulliver. 2019. "Random-Noise Denoising and Clutter Elimination of Human Respiration Movements Based on an Improved Time Window Selection Algorithm Using Wavelet Transform" Sensors 19, no. 1: 95. https://doi.org/10.3390/s19010095
APA StyleShikhsarmast, F. M., Lyu, T., Liang, X., Zhang, H., & Gulliver, T. A. (2019). Random-Noise Denoising and Clutter Elimination of Human Respiration Movements Based on an Improved Time Window Selection Algorithm Using Wavelet Transform. Sensors, 19(1), 95. https://doi.org/10.3390/s19010095