Determination of HPLC-UV Fingerprints of Spanish Paprika (Capsicum annuum L.) for Its Classification by Linear Discriminant Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standard Solutions
2.2. Instrumentation
2.3. Samples and Sample Treatment
2.4. Data Analysis
3. Results and Discussion
3.1. HPLC-UV Method
3.2. Sample Extraction Optimization
3.3. Qualitative Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Govindarajan, V.S.; Sathyanarayana, N.M. Capsicum—Production, technology, chemistry, and quality. Part V. Impact on physiology, pharmacology, nutrition, and metabolism; structure, pungency, pain, and desensitization sequences. Crit. Rev. Food Sci. Nutr. 1991, 29, 435–474. [Google Scholar] [CrossRef] [PubMed]
- Surh, Y.J.; Lee, S.S. Capsaicin in hot chili pepper: Carcinogen, co-carcinogen or anticarcinogen? Food Chem. Toxicol. 1996, 34, 313–316. [Google Scholar] [CrossRef]
- Márkus, F.; Daood, H.G.; Kapitány, J.; Biacs, P.A. Change in the carotenoid and antioxidant content of spice red pepper (Paprika) as a function of ripening and some technological factors. J. Agric. Food Chem. 1999, 47, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Hornero-Méndez, D.; Gómez-Ladrón de Guevara, R.; Mínguez-Mosquera, M.I. Carotenoid Biosynthesis Changes in Five Red Pepper (Capsicum annuum L.) Cultivars during Ripening. Cultivar Selection for Breeding. J. Agric. Food Chem. 2000, 48, 3857–3864. [Google Scholar] [CrossRef] [PubMed]
- Pol, L.C.; Siddiq, M.; Shahzad, T. Chili, Peppers, and Paprika. In Handbook of Vegetables and Vegtable Processing; Siddiq, M., Uebersax, M.A., Eds.; John Wiley & Sons: Hoboken NJ, USA, 2018; pp. 633–660. [Google Scholar]
- Anuario de Estadistica 2016. Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, Gobierno de España, Madrid 2017. Available online: http://www.mapama.gob.es/estadistica/pags/anuario/2016/AE16.pdf (accessed on 17 February 2017).
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols—Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.Y.; Lee, Y.J.; Hong, J.T.; Lee, H.J. Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res. Bull. 2012, 87, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Tomé-Carneiro, J.; Visioli, F. Polyphenol-based nutraceuticals for the prevention and treatment of cardiovascular disease: Review of human evidence. Phytomedicine 2016, 23, 1145–1174. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Serrano, M.; Núñez, O.; Saurina, J. Chemometrics in the polyphenolic characterization of natural products by liquid chromatography and capillary electrophoresis. In Chemometrics. Methods, Applications and New Research; Luna, A.S., Ed.; Nova Science: New York, NY, USA, 2017. [Google Scholar]
- Saurina, J.; Sentellas, S. Determination of Phenolic Compounds in Food Matrices: Applications to Characterization and Authentication. In Fast Liquid Chromatography-Mass Spectrometry Methods in Food and Environmental Analysis; Núñez, O., Gallart-Ayala, H., Eds.; Imperial College Press: London, UK, 2015. [Google Scholar]
- Nagy, Z.; Daood, H.; Ambrózy, Z.; Helyes, L. Determination of Polyphenols, Capsaicinoids, and Vitamin C in New Hybrids of Chili Peppers. J. Anal. Methods Chem. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.L.; Haesen, N.; Câmara, J.S. A new and improved strategy combining a dispersive-solid phase extraction-based multiclass method with ultra high pressure liquid chromatography for analysis of low molecular weight polyphenols in vegetables. J. Chromatogr. A 2012, 1260, 154–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, M.; Núñez, O.; Saurina, J.; Hernández-Cassou, S.; Puignou, L. Characterization of fruit products by capillary zone electrophoresis and liquid chromatography using the compositional profiles of polyphenols: Application to authentication of natural extracts. J. Agric. Food Chem. 2014, 62, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Mudric, S.Z.; Gašic, U.M.; Dramicanin, A.M.; Ciric, I.Z.; Milojkovic-Opsenica, D.M.; Popovic-Dordevic, J.B.; Momirovic, N.M.; Tešic, Z.L. The polyphenolics and carbohydrates as indicators of botanical and geographical origin of Serbian autochthonous clones of red spice paprika. Food Chem. 2017, 217, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Martí, R.; Valcárcel, M.; Herrero-Martínez, J.M.; Cebolla-Cornejo, J.; Roselló, S. Fast simultaneous determination of prominent polyphenols in vegetables and fruits by reversed phase liquid chromatography using a fused-core column. Food Chem. 2015, 169, 169–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puigventós, L.; Navarro, M.; Alechaga, É.; Núñez, O.; Saurina, J.; Hernández-Cassou, S.; Puignou, L. Determination of polyphenolic profiles by liquid chromatography-electrospray-tandem mass spectrometry for the authentication of fruit extracts. Anal. Bioanal. Chem. 2015, 407, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Morales-Soto, A.; Gómez-Caravaca, A.M.; García-Salas, P.; Segura-Carretero, A.; Fernández-Gutiérrez, A. High-performance liquid chromatography coupled to diode array and electrospray time-of-flight mass spectrometry detectors for a comprehensive characterization of phenolic and other polar compounds in three pepper (Capsicum annuum L.) samples. Food Res. Int. 2013, 51, 977–984. [Google Scholar] [CrossRef]
- Lucci, P.; Saurina, J.; Núñez, O. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. TrAC Trends Anal. Chem. 2017, 88, 1–24. [Google Scholar] [CrossRef]
- Palacios-Morillo, A.; Jurado, J.M.; Alcázar, Á.; De Pablos, F. Geographical characterization of Spanish PDO paprika by multivariate analysis of multielemental content. Talanta 2014, 128, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.; Martín, A.; Aranda, E.; Bartolomé, T.; Córdoba, M.G. Detection of Smoked Paprika “Pimentón de La Vera” adulteration by Free Zone Capillary Electrophoresis (FZCE). J. Agric. Food Chem. 2006, 54, 4141–4147. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.; Martín, A.; Aranda, E.; Bartolomé, T.; de Córdoba, M.G. Application of temperature-induced phase partition of proteins for the detection of smoked paprika adulteration by free zone capillary electrophoresis (FZCE). Food Chem. 2007, 105, 1219–1227. [Google Scholar] [CrossRef]
- Hernández, A.; Aranda, E.; Martín, A.; Benito, M.J.; Bartolomé, T.; Córdoba, M.D.G. Efficiency of DNA typing methods for detection of smoked paprika “pimenton de la Vera” adulteration used in the elaboration of dry-cured iberian pork sausages. J. Agric. Food Chem. 2010, 58, 11688–11694. [Google Scholar] [CrossRef] [PubMed]
- Cetó, X.; Céspedes, F.; del Valle, M. Comparison of methods for the processing of voltammetric electronic tongues data. Microchim. Acta 2013, 180, 319–330. [Google Scholar] [CrossRef]
- Ciulu-Costinescu, F.; Chifiriuc, M.C.; Popa, M.; Bleotu, C.; Neamtu, J.; Averis, L.M.E.; Bubulica, M.V.; Simionescu, A.; Aldea, I.M.; Belu, I. Screening of Polyphenol Content and In vitro Studies of Antioxidant, Antibacterial and Cytotoxic Activities of Capsicum Annuum Extracts. Rev. Chim. 2015, 66, 1261–1266. [Google Scholar]
- Pardo-Mates, N.; Vera, A.; Barbosa, S.; Hidalgo-Serrano, M.; Núñez, O.; Saurina, J.; Hernández-Cassou, S.; Puignou, L. Characterization, classification and authentication of fruit-based extracts by means of HPLC-UV chromatographic fingerprints, polyphenolic profiles and chemometric methods. Food Chem. 2017, 221, 29–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larrauri, A.; Núñez, O.; Hernández-Cassou, S.; Saurina, J. Determination of polyphenols in white wines by liquid chromatography: Application to the characterization of alella (Catalonia, Spain) wines using chemometric methods. J. AOAC Int. 2017, 100, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Farrés-Cebrián, M.; Seró, R.; Saurina, J.; Núñez, O. HPLC-UV Polyphenolic Profiles in the Classification of Olive Oils and Other Vegetable Oils via Principal Component Analysis. Separations 2016, 3, 33. [Google Scholar] [CrossRef]
- Wagner, M.S.; Castner, D.G. Characterization of adsorbed protein films by time-of-flight secondary ion mass spectrometry with principal component analysis. Langmuir 2001, 17, 4649–4660. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wichein, D.W. Applied Multivariate Statistical Analysis; Pearson International Edition: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Cetó, X.; Voelcker, N.H.; Prieto-Simón, B. Bioelectronic tongues: New trends and applications in water and food analysis. Biosens. Bioelectron. 2016, 79, 608–626. [Google Scholar] [CrossRef] [PubMed]
Peak | Phenolic compound | Family | Structure | CAS Number |
---|---|---|---|---|
1 | Arbutine | Phenolic glucoside | | 497-76-7 |
2 | Gallic acid | Phenolic acid | | 149-91-7 |
3 | Homogentisic acid | Phenolic acid | | 451-13-8 |
4 | Tyrosol | Other phenolics | | 501-94-0 |
5 | 4-Hydroxybenzoic acid | Phenolic acid | | 99-96-7 |
6 | Chlorogenic acid | Phenolic acid | | 327-97-9 |
7 | Vanillic acid | Phenolic acid | | 121-34-6 |
8 | Caffeic acid | Phenolic acid | | 331-39-5 |
9 | Syringic acid | Phenolic acid | | 530-57-4 |
10 | Syringaldehyde | Phenolic aldehyde | | 134-96-3 |
11 | Ethyl gallate | Phenolic acid | | 831-61-8 |
12 | Umbelliferon | Coumarin | | 93-35-6 |
13 | p-Coumaric acid | Phenolic acid | | 501-98-4 |
14 | Ferulic acid | Phenolic acid | | 537-98-4 |
15 | Polydatin | Stilben | | 65914-17-2 |
16 | Resveratrol | Stilben | | 501-36-0 |
17 | trans-Cinnamic acid | Cinnamic acid | | 140-10-3 |
Peak | Polyphenol | ILOD (µg/L) | ILOQ (µg/L) | Linearity (r2) | Sensitivity | run-to-run precision (%RSD, n = 5) | day-to-day precision (%RSD, n = 3 × 5) | Trueness (% Error) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level 1 | Level 2 | Level 3 | Level 4 | Level 1 | Level 2 | Level 3 | Level 4 | Level 1 | Level 2 | Level 3 | Level 4 | |||||||||
1 | Arbutine | 38.0 | 126.7 | 0.9996 | 6.29 | 0.1 | 0.1 | 0.1 | 0.4 | 0.4 | 3.9 | 1.4 | 19.3 | 0.5 | 0.7 | 3.1 | 7.9 | |||
2 | Gallic acid | 33.6 | 112.0 | 0.9997 | 36.70 | 0.1 | 0.05 | 0.4 | 0.3 | 0.4 | 2.7 | 2.1 | 10.7 | 1.0 | 0.7 | 1.6 | 2.5 | |||
3 | Homogentisic acid | 31.7 | 105.7 | 0.9996 | 11.50 | 0.1 | 0.2 | 0.4 | 0.4 | 1.8 | 4.5 | 9.1 | 17.2 | 1.0 | 0.3 | 0.4 | 5.1 | |||
4 | Tyrosol | 31.3 | 104.3 | 0.9996 | 9.07 | 0.1 | 0.1 | 0.1 | 0.7 | 2.1 | 3.3 | 4.7 | 9.1 | 1.0 | 0.2 | 5.3 | 13.3 | |||
5 | 4-Hydroxybenzoic acid | 13.4 | 44.7 | 0.9996 | 18.05 | 0.04 | 0.1 | 0.1 | 0.2 | 1.8 | 3.3 | 3.7 | 10.0 | 1.0 | 1.3 | 4.7 | 4.3 | |||
6 | Chlorogenic acid | 33.3 | 111.0 | 0.9996 | 19.24 | 0.03 | 0.1 | 0.1 | 0.3 | 1.1 | 4.4 | 8.1 | 8.6 | 1.1 | 0.6 | 0.1 | 7.2 | |||
7 | Vanillic acid | 12.5 | 41.7 | 0.9999 | 26.39 | 0.1 | 0.1 | 0.2 | 0.3 | 0.8 | 3.2 | 3.3 | 13.5 | 0.04 | 1.0 | 4.6 | 1.0 | |||
8 | Caffeic acid | 13.2 | 44.0 | 0.9996 | 48.28 | 0.05 | 0.03 | 0.1 | 0.2 | 1.1 | 3.1 | 5.5 | 14.9 | 0.3 | 0.9 | 2.1 | 8.6 | |||
9 | Syringic acid | 12.8 | 42.7 | 0.9996 | 53.45 | 0.1 | 0.1 | 0.1 | 0.2 | 2.1 | 3.4 | 4.2 | 10.3 | 1.1 | 1.1 | 5.3 | 5.7 | |||
10 | Syringaldehyde | 31.0 | 103.3 | 0.9999 | 28.06 | 0.1 | 0.1 | 0.1 | 0.1 | 1.6 | 3.2 | 2.3 | 8.1 | 0.6 | 0.7 | 4.0 | 25.7 | |||
11 | Ethyl gallate | 13.0 | 43.3 | 0.9996 | 41.57 | 0.1 | 0.1 | 0.3 | 0.2 | 2.0 | 5.7 | 10.8 | 14.3 | 1.0 | 3.4 | 0.5 | 1.3 | |||
12 | Umbelliferon | 31.2 | 104.0 | 0.9996 | 25.50 | 0.1 | 0.03 | 0.1 | 0.5 | 1.1 | 3.8 | 5.9 | 17.7 | 0.3 | 0.2 | 2.4 | 8.9 | |||
13 | p-Coumaric acid | 14.3 | 47.7 | 0.9999 | 75.10 | 0.1 | 0.2 | 0.1 | 0.1 | 1.2 | 4.2 | 6.0 | 13.6 | 0.8 | 1.1 | 0.1 | 4.4 | |||
14 | Ferulic acid | 31.1 | 103.7 | 0.9999 | 46.79 | 0.1 | 0.04 | 0.1 | 0.2 | 1.4 | 3.9 | 6.3 | 14.9 | 0.9 | 0.9 | 1.6 | 5.2 | |||
15 | Polydatin | 33.0 | 110.7 | 0.9999 | 37.26 | 0.1 | 0.2 | 0.5 | 0.4 | 1.4 | 2.5 | 7.9 | 13.7 | 0.5 | 2.0 | 0.6 | 8.7 | |||
16 | Resveratrol | 31.1 | 103.7 | 0.9999 | 63.62 | 0.04 | 0.2 | 0.3 | 0.4 | 1.4 | 4.5 | 8.2 | 18.3 | 1.2 | 0.6 | 4.6 | 3.7 | |||
17 | trans-Cinnamic acid | 12.6 | 42.0 | 0.9999 | 138.66 | 0.1 | 0.1 | 0.4 | 2.7 | 3.3 | 2.7 | 5.6 | 8.1 | 1.4 | 0.5 | 8.3 | 29.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cetó, X.; Serrano, N.; Aragó, M.; Gámez, A.; Esteban, M.; Díaz-Cruz, J.M.; Núñez, O. Determination of HPLC-UV Fingerprints of Spanish Paprika (Capsicum annuum L.) for Its Classification by Linear Discriminant Analysis. Sensors 2018, 18, 4479. https://doi.org/10.3390/s18124479
Cetó X, Serrano N, Aragó M, Gámez A, Esteban M, Díaz-Cruz JM, Núñez O. Determination of HPLC-UV Fingerprints of Spanish Paprika (Capsicum annuum L.) for Its Classification by Linear Discriminant Analysis. Sensors. 2018; 18(12):4479. https://doi.org/10.3390/s18124479
Chicago/Turabian StyleCetó, Xavier, Núria Serrano, Miriam Aragó, Alejandro Gámez, Miquel Esteban, José Manuel Díaz-Cruz, and Oscar Núñez. 2018. "Determination of HPLC-UV Fingerprints of Spanish Paprika (Capsicum annuum L.) for Its Classification by Linear Discriminant Analysis" Sensors 18, no. 12: 4479. https://doi.org/10.3390/s18124479
APA StyleCetó, X., Serrano, N., Aragó, M., Gámez, A., Esteban, M., Díaz-Cruz, J. M., & Núñez, O. (2018). Determination of HPLC-UV Fingerprints of Spanish Paprika (Capsicum annuum L.) for Its Classification by Linear Discriminant Analysis. Sensors, 18(12), 4479. https://doi.org/10.3390/s18124479