Satellite-Based Estimation of Hourly PM2.5 Concentrations Using a Vertical-Humidity Correction Method from Himawari-AOD in Hebei
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. AHI AOD
2.2.2. Meteorological Data
2.2.3. PM2.5 Data
3. Methodology
3.1. Vertical Correction
3.2. Relativity Correction
4. Results and Discussion
4.1. Descriptive Statistics
4.2. Fitting and Analysis
4.3. The Results of PM2.5 Estimation
4.3.1. Vertical-Humidity Correction on AOD
4.3.2. PM2.5 Estimation Validation
4.3.3. Hourly Patterns of PM2.5 Concentration
5. Conclusions
- Three sites located in different regions of Hebei province were selected to analyze the capacity of hygroscopic growth. Qinhuangdao-Changli, with a sea salt pollutant component, has the highest hygroscopic growth ability, while Zhangjiakou-Huaian has the second highest hygroscopic growth ability, and Xingtai-Nanhe, with a high black carbon pollutant component, has the lowest hygroscopic growth ability; these results indicate that the physicochemical characteristics of the particles in different regions are inconsistent. Thus, vertical-humidity correction is helpful to improve the accuracy of PM2.5 estimation in different regions.
- Compared to the relationship between AOD and PM2.5, the relationship between and PM2.5 significantly improved, with the coefficient r increasing from 0.19–0.47 to 0.61–0.76. The accuracy of PM2.5 estimation is verified at the hourly, daily, and monthly scales, respectively. The hourly PM2.5 estimation is relatively high r (0.8 ± 0.07), with a low RMSE (30.4 ± 5.5 μg/m3), and the accuracy in the afternoon (13:00 to 16:00) is higher than that in the morning (09:00 to 12:00). In a comparison of the daily average PM2.5 concentrations at 11 sites, the r value is approximately 0.9, and the RMSE is between 13.94 and 31.44 μg/m3. The result suggested that the new method in this study is useful to improve the accuracy of PM2.5 estimation.
- The spatial distribution of PM2.5 concentrations from 09:00 to 16:00 is estimated for 10 January 2017, and the process of pollution accumulation and dissipation is clearly presented over space and time. This type of estimation is conducive to the evaluation and control of air quality.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, J.; Zhu, J.; Li, W.; Xu, D.; Liu, J. Estimation of the PM2.5 health effects in China during 2000–2011. Environ. Sci. Pollut. Res. 2017, 24, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Donkelaar, A.V.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect. 2010, 118, 847. [Google Scholar] [CrossRef] [PubMed]
- See, S.W.; Balasubramanian, R. Chemical characteristics of fine particles emitted from different gas cooking methods. Atmos. Environ. 2008, 42, 8852–8862. [Google Scholar] [CrossRef]
- Pope, R.C.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 1368–1380. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Air Quality Guidelines for Europe, 2nd ed.; European Series; WHO Regional Office for Europe: Copenhagen, Denmark, 2000; Volume 91. [Google Scholar]
- Li, C.C.; Mao, J.T.; Liu, Q.H. Application of modis aerosol product in the study of air pollution in Beijing. Sci. China Ser. D Earth Sci. 2005, 35, 177–186. [Google Scholar]
- Zhang, M.; Ma, Y.; Wang, L.; Gong, W.; Hu, B.; Shi, Y. Spatial-temporal characteristics of aerosol loading over the yangtze river basin during 2001–2015: Aerosol loading in the yangtze river basin. Int. J. Climatol. 2018, 38, 2138–3252. [Google Scholar] [CrossRef]
- Xiao, Q.Y.; Wang, Y.J.; Howard, H.; Meng, X.; Geng, G.; Lyapustin, A.; Liu, Y. Full-coverage high-resolution daily PM2.5 estimation using maiac aod in the yangtze river delta of China. Remote. Sens. Environ. 2017, 199, 437–446. [Google Scholar] [CrossRef]
- Lin, C.; Li, Y.; Yuan, Z.; Lau, A.K.H.; Li, C.; Fung, J.C.H. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote. Sens. Environ. 2015, 156, 117–128. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, L.; Tao, J.; Liu, Y.; Hu, X.; Tao, M. An empirical method of RH correction for satellite estimation of ground-level pm concentrations. Atmos. Environ. 2014, 95, 71–81. [Google Scholar] [CrossRef]
- Hoff, R.; Christopher, S. Remote sensing of particulate pollution from space: Have we reached the promised land? J. Air Waste Manag. Assoc. 2009, 59, 645–675. [Google Scholar] [CrossRef] [PubMed]
- Van, A.D.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ. Health Perspect. 2015, 123, 135. [Google Scholar]
- Donkelaar, A.V.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 2016, 50, 3762. [Google Scholar] [CrossRef] [PubMed]
- Tilson, H.A. Ehp paper of the year, 2011. Environ. Health Perspect. 2013, 121, A322. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Park, R.J.; Jacob, D.J.; Li, Q.; Kilaru, V.; Sarnat, J.A. Mapping annual mean ground-level PM2.5 concentrations using multiangle imaging spectroradiometer aerosol optical thickness over the contiguous united states. J. Geophys. Res. Atmos. 2004, 109, D22. [Google Scholar]
- He, Q.; Geng, F.; Li, C.; Yang, S.; Wang, Y.; Mu, H.; Zhou, G.; Liu, X.; Gao, W.; Cheng, T. Long-term characteristics of satellite-based PM2.5 over east China. Sci. Total. Environ. 2017, 612, 1417. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Li, Y.; Lau, A.K.H.; Deng, X.; Tse, T.K.T.; Fung, J.C.H.; Li, C.; Li, Z.; Lu, X.; Zhang, X. Estimation of long-term population exposure to PM2.5 for dense urban areas using 1-km modis data. Remote. Sens. Environ. 2016, 179, 13–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote. Sens. Environ. 2015, 160, 252–262. [Google Scholar] [CrossRef]
- Yao, F.; Si, M.; Li, W.; Wu, J. A multidimensional comparison between modis and viirs aod in estimating ground-level PM2.5 concentrations over a heavily polluted region in China. Sci. Total. Environ. 2018, 618, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Mao, F.; Du, L.; Pan, Z.; Gong, W.; Fang, S. Deriving hourly PM2.5 concentrations from himawari-8 aods over beijing–tianjin–hebei in China. Remote. Sens. 2017, 9, 858. [Google Scholar] [CrossRef]
- Hu, X.; Waller, L.A.; Al-Hamdan, M.Z.; Crosson, W.L.; Jr, M.G.E.; Estes, S.M.; Quattrochi, D.A.; Sarnat, J.A.; Liu, Y. Estimating ground-level PM2.5 concentrations in the southeastern U.S. Using geographically weighted regression. Environ. Res. 2013, 121, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Franklin, M.; Kahn, R.; Koutrakis, P. Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between misr and modis. Remote Sens. Environ. 2007, 107, 33–44. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, L.; Che, W.; Zheng, Z.; Yin, S. A highly resolved temporal and spatial air pollutant emission inventory for the pearl river delta region, China and its uncertainty assessment. Atmos. Environ. 2009, 43, 5112–5122. [Google Scholar] [CrossRef]
- Tiwary, A.; Colls, J. Air Pollution: Measurement, Modelling and Mitigation, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Kukkonen, J.; Olsson, T.; Schultz, D.M.; Baklanov, A.; Klein, T.; Miranda, A.I.; Monteiro, A.; Hirtl, M.; Tarvainen, V.; Boy, M. A review of operational, regional-scale, chemical weather forecasting models in europe. Atmos. Chem. Phys. Discuss. 2012, 11, 1–87. [Google Scholar] [CrossRef] [Green Version]
- Koelemeijer, R.; Homan, C.; Matthijsen, J. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over europe. Atmos. Environ. 2006, 40, 5304–5315. [Google Scholar] [CrossRef]
- Guo, J.P.; Zhang, X.Y.; Che, H.Z.; Gong, S.L.; An, X.; Cao, C.X.; Jie, G.; Zhang, H.; Wang, Y.Q.; Zhang, X.C. Correlation between PM concentrations and aerosol optical depth in Eastern China. In Proceedings of the Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 5876–5886. [Google Scholar]
- Wang, Z.; Chen, L.; Tao, J.; Zhang, Y.; Su, L. Satellite-based estimation of regional particulate matter (PM) in beijing using vertical-and-rh correcting method. Remote Sens. Environ. 2010, 114, 50–63. [Google Scholar] [CrossRef]
- He, Q.; Zhou, G.; Geng, F.; Gao, W.; Yu, W. Spatial distribution of aerosol hygroscopicity and its effect on PM2.5 retrieval in east China. Atmos. Res. 2016, 170, 161–167. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Y.; Tao, J.; Wang, Z.; Fan, M.; Leeuw, G.D.; Chen, L. Preliminary investigation of a new ahi aerosol optical depth (AOD) retrieval algorithm and evaluation with multiple source aod measurements in China. Remote. Sens. 2018, 10, 748. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from eos moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Husar, R.B.; Jd, M.L.H. Distribution of continental surface aerosol extinction based on visual range data. Atmos. Environ. 2000, 34, 5067–5078. [Google Scholar] [CrossRef]
- Ouyang, S.H. Summarization on PM2.5 online monitoring technique. China Environ. Prot. Ind. 2012, 4, 013. [Google Scholar]
- Liou, K.N.; Bohren, C. An introduction to atmospheric radiation. Phys. Today 1981, 34, 66–67. [Google Scholar] [CrossRef]
- Emili, E.; Popp, C.; Petitta, M.; Riffler, M.; Wunderle, S.; Zebisch, M. PM 10 remote sensing from geostationary seviri and polar-orbiting modis sensors over the complex terrain of the european alpine region. Remote Sens. Environ. 2010, 114, 2485–2499. [Google Scholar] [CrossRef]
- Busen, R.; Hänel, G. Radiation budget of the boundary layer. Part i: Measurement of absorption of solar radiation by atmospheric particles and water vapor. Beiträge Zur Physik Der Atmosphäre 1987, 60, 229–240. [Google Scholar]
- Liu, Y.; Sarnat, J.A.; Kilaru, V.; Jacob, D.J.; Koutrakis, P. Estimating ground-level PM2.5 in the eastern united states using satellite remote sensing. Environ. Sci. Technol. 2005, 39, 3269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koschmieder, H. Theorieder horizontalen sichtweite ii: Kontrast und sichtweite beitrage zurphysik derfreien. Beiträge Zur Physik Der Freien Atmosphäre 1925, 12, 171–181. [Google Scholar]
- Tang, I.N. Chemical and size effects of hygroscopic aerosols on light scattering coefficients. J. Geophys. Res. Atmos. 1996, 101, 19245–19250. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Y.; Zhang, Y.; Jung, J.; Sugimoto, N.; Chang, S.Y.; Kim, Y.J.; Fan, S.; Zeng, L. Influences of relative humidity and particle chemical composition on aerosol scattering properties during the 2006 prd campaign. Atmos. Environ. 2008, 42, 1525–1536. [Google Scholar] [CrossRef]
- Hand, J.L.; Malm, W.C. Review of aerosol mass scattering efficiencies from ground-based measurements since 1990. J. Geophys. Res. Atmos. 2007, 112, D16. [Google Scholar] [CrossRef]
- Nessler, R.; Weingartner, E.; Baltensperger, U. Effect of humidity on aerosol light absorption and its implications for extinction and the single scattering albedo illustrated for a site in the lower free troposphere. J. Aerosol Sci. 2005, 36, 958–972. [Google Scholar] [CrossRef]
- Lai, L.Y.; Sequeira, R. Visibility degradation across hong kong: Its components and their relative contributions. Atmos. Environ. 2001, 35, 5861–5872. [Google Scholar] [CrossRef]
- Kotchenruther, R.A.; Hobbs, P.V.; Hegg, D.A. Humidification factors for atmospheric aerosols off the mid-atlantic coast of the united states. J. Geophys. Res. Atmos. 1999, 104, 2239–2251. [Google Scholar] [CrossRef]
- Lee, A.K.Y.; Ling, T.Y.; Chan, C.K. Understanding hygroscopic growth and phase transformation of aerosols using single particle raman spectroscopy in an electrodynamic balance. Faraday Discuss. 2008, 137, 245. [Google Scholar] [CrossRef] [PubMed]
- Kotchenruther, R.A.; Hobbs, P.V. Humidification factors of aerosols from biomass burning in brazil. J. Geophys. Res. Atmos. 1998, 103, 32081–32089. [Google Scholar] [CrossRef]
- Im, J.S.; Saxena, V.K.; Wenny, B.N. An assessment of hygroscopic growth factors for aerosols in the surface boundary layer for computing direct radiative forcing. J. Geophys. Res. Atmos. 2001, 106, 20213–20224. [Google Scholar] [CrossRef] [Green Version]
- Randriamiarisoa, H.; Chazette, P.; Couvert, P.; Sanak, J.; Mégie, G. Relative humidity impact on aerosol parameters in a paris suburban area. Atmos. Chem. Phys. 2006, 6, 1389–1407. [Google Scholar] [CrossRef]
- Zieger, P.; Kienast-Sjogren, E.; Starace, M.; Bismarck, J.V. Spatial variation of aerosol optical properties around the high-alpine site jungfraujoch (3580 m a.S.L.). Atmos. Chem. Phys. Discuss. 2012, 12, 7231–7249. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Wang, Y.; Chen, L.; Wang, Z.; Zhu, H.; Li, B. Inter-comparison and evaluation of remote sensing precipitation products over China from 2005 to 2013. Remote Sens. 2018, 10, 168. [Google Scholar] [CrossRef]
Variable | Value | Xingtai-Nanhe | Qinhuangdao-Changli | Zhangjiakou-Huaian |
---|---|---|---|---|
PM2.5 (μg/m3) | mean | 86.96 | 64.32 | 29.34 |
median | 57.00 | 51.50 | 19.00 | |
std | 81.93 | 46.53 | 28.88 | |
VIS (km) | mean | 22.14 | 13.38 | 23.15 |
median | 25.56 | 11.55 | 24.26 | |
std | 12.60 | 8.62 | 11.08 | |
RH (%) | mean | 57.21 | 59.19 | 44.54 |
median | 56.00 | 66.00 | 40.00 | |
std | 24.14 | 24.92 | 24.52 |
Month | Xingtai-Nanhe | Qinhuangdao-Changli | Zhangjiakou-Huaian |
---|---|---|---|
January | 1.13 | 1.61 | 1.78 |
February | 2.23 | 1.39 | 4.34 |
March | 1.01 | 1.81 | 2.13 |
April | 1.06 | 2.08 | 1.96 |
May | 1.18 | 2.39 | 2.23 |
June | 1.20 | 2.03 | 1.35 |
Half-year | 1.32 | 1.84 | 1.28 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Chen, L.; Zhu, H.; Wang, Z.; Wang, X.; Zhang, L.; Gu, T.; Zhu, G.; Zhang, Y. Satellite-Based Estimation of Hourly PM2.5 Concentrations Using a Vertical-Humidity Correction Method from Himawari-AOD in Hebei. Sensors 2018, 18, 3456. https://doi.org/10.3390/s18103456
Zeng Q, Chen L, Zhu H, Wang Z, Wang X, Zhang L, Gu T, Zhu G, Zhang Y. Satellite-Based Estimation of Hourly PM2.5 Concentrations Using a Vertical-Humidity Correction Method from Himawari-AOD in Hebei. Sensors. 2018; 18(10):3456. https://doi.org/10.3390/s18103456
Chicago/Turabian StyleZeng, Qiaolin, Liangfu Chen, Hao Zhu, Zifeng Wang, Xinhui Wang, Liang Zhang, Tianyu Gu, Guiyan Zhu, and Yang Zhang. 2018. "Satellite-Based Estimation of Hourly PM2.5 Concentrations Using a Vertical-Humidity Correction Method from Himawari-AOD in Hebei" Sensors 18, no. 10: 3456. https://doi.org/10.3390/s18103456
APA StyleZeng, Q., Chen, L., Zhu, H., Wang, Z., Wang, X., Zhang, L., Gu, T., Zhu, G., & Zhang, Y. (2018). Satellite-Based Estimation of Hourly PM2.5 Concentrations Using a Vertical-Humidity Correction Method from Himawari-AOD in Hebei. Sensors, 18(10), 3456. https://doi.org/10.3390/s18103456