An Operational In Situ Soil Moisture & Soil Temperature Monitoring Network for West Wales, UK: The WSMN Network
Abstract
:1. Introduction
2. Overview
3. Scientific Importance and Use of Data
4. Data Summary
4.1. Soil Moisture
4.2. Soil Temperature
4.3. Ancillary Data
5. Data Quality
6. Data Management & Availability
7. Conclusions and Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Williams, C. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci. 2011, 116, 2005–2012. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Han, D.; Islam, T.; Petropoulos, G.P.; Gupta, M.; Dai, Q. Seasonal evaluation of Evapotranspiration fluxes from MODIS Satellite and Mesoscale Model Downscaled Global Reanalysis Datasets. Theor. Appl. Climatol. 2016, 124, 461–473. [Google Scholar] [CrossRef]
- Ireland, G.; Petropoulos, G.P.; Carlson, T.N.; Purdy, S. Addressing the ability of a land biosphere model to predict key biophysical vegetation characterisation parameters with Global Sensitivity Analysis. Environ. Model. Softw. 2015, 65, 94–107. [Google Scholar] [CrossRef]
- 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: http://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=pdf (accessed on 24 May 2017).
- IPCC. Climate Change. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. Available online: http://www.ipcc.ch/report/ar5/wg1/ (accessed on 24 May 2017).
- Shen, C.; Niu, J.; Phanikumar, M.S. Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface-land surface processes model. Water Resour. Res. 2013, 49, 2552–2572. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface Soil Moisture Retrievals from Remote Sensing: Evolution, Current Status, Products & Future Trends. Phys. Chem. Earth 2015, 83–84, 36–56. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Pachepsky, Y.; Montzka, C.; van der Kruk, J.; Bogena, H.; Weihermüllera, L.; Herbsta, M.; Martinez, G.; Vanderborght, J.; et al. On the spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol. 2013, 516, 76–96. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 3rd ed.; Routledge: Oxon, UK, 1992. [Google Scholar]
- Liu, J.G.; Xie, Z.H. Improving simulation of soil moisture in China using a multiple meteorological forcing ensemble approach. Hydrol. Earth Syst. Sci. Dis. 2013, 10, 3467–3500. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Veroustraete, F.; Feyen, J. Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors 2013, 8, 70–117. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, G.; Griffiths, H.; Dorigo, W. Surface Soil Moisture Estimation: Principles and Conventional Measurement Techniques. In Remote Sensing of Land Surface Turbulent Fluxes & Soil Moisture; Taylor & Francis Group, CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; Robock, A.; Jackson, T. The international soil moisture network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 8, 1609–1663. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Ireland, G.; Srivastava, P.K.; Ioannou-Katidis, P. An appraisal of soil moisture operational estimates accuracy from SMOS MIRAS using validated in-situ observations acquired at a Mediterranean environment. Int. J. Remote Sens. 2014, 35, 5239–5250. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Ireland, G.; Lamine, S.; Ghilain, N.; Anagnostopoulos, V.; North, M.R.; Srivastava, P.K.; Georgopoulou, H. Evapotranspiration Estimates from SEVIRI to Support Sustainable Water Management. J. Appl. Earth Obs. Geoinf. 2016, 49, 175–187. [Google Scholar] [CrossRef]
- Richter, H.; Western, A.; Chiew, F. The effect of soil and vegetation parameters in the ECMWF land surface scheme. J. Hydrometeorol. 2004, 5, 1131–1146. [Google Scholar] [CrossRef]
- North, M.R.; Petropoulos, G.P.; Rentall, D.V.; Ireland, G.I.; McCalmont, J.P. Quantifying the prediction accuracy of a 1-D SVAT model at a range of ecosystems in the USA and Australia: Evidence towards its use as a tool to study Earth’s system interactions. Earth Surf. Dyn. Discuss. 2015, 6, 217–265. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Carlson, T.N. Retrievals of turbulent heat fluxes and soil moisture content by Remote Sensing. In Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications; Taylor & Francis Group, CRC Press: Boca Raton, FL, USA, 2011; pp. 469–501. [Google Scholar]
- Smith, A.B.; Walker, J.P.; Western, A.W.; Young, R.I.; Ellett, K.M.; Pipunic, R.C.; Grayson, R.B.; Siriwardena, L.; Chiew, F.H.S.; Richter, H. The Murrumbidgee soil moisture monitoring network data set. Water Resour. Res. 2012, 48, 1–6. [Google Scholar] [CrossRef]
Site | Established | Coordinates | Elevation | Sensor Depth | Land Use |
---|---|---|---|---|---|
Site 1—Comins Coch (Station 1) | 2013 | 52°25′56.38′′ N 4°1′14.15′′ W | 30 m | 5 cm | Agriculture/Grasslands |
Site 2—Comins Coch (Station 2) | 2013 | 52°25′56.78′′ N 4°1′17.76′′ W | 28 m | 5 cm | Agriculture/Grasslands |
Site 3—Penglais (Station 3) | 2012 | 52°25′20.76′′ N 4°4′6.01′′ W | 114 m | 5 cm | Ryegrass Pastureland transitions to Miscanthus x Giganteus Bioenergy Crop |
Site 4—Penglais (Station 4) | 2013 | 52°25’17.24” N 4°4’14.15” W | 110 m | 5 cm | Ryegrass Pastureland transitions to Miscanthus Bioenergy Crop |
Site 5—Cae Canol (Station 5) | 2009 | 52°24′49.99′′ N 4°2′34.42′′ W | 128 m | 10 cm | 16 individual plots each of willow and Miscanthus and grass rows |
Site 6—Cae Canol (Station 6) | 2009 | 52°24′49.67′′ N 4°2′35.18′′ W | 128 m | 10 cm | 16 individual plots each of willow and Miscanthus and grass rows |
Site 7—Pwllpeiran (Station 7) | 2014 | 52°21′55.07′′ W 3°49′54.28′′ W | 375 m | 10 cm | Semi-Improved U4 Grassland |
Site 8 –Pwllpeiran (Station 8) | 2014 | 52°23′13.01′′ N 3°45′7.35′′ W | 500 m | 10 cm | Peatland |
Station 9—PwllPeiran (Station 9) | 2016 | 52°21′11.57′′ N 3°48′11.22′′ W | 260 m | 5 cm | Semi-Improved grassland |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petropoulos, G.P.; McCalmont, J.P. An Operational In Situ Soil Moisture & Soil Temperature Monitoring Network for West Wales, UK: The WSMN Network. Sensors 2017, 17, 1481. https://doi.org/10.3390/s17071481
Petropoulos GP, McCalmont JP. An Operational In Situ Soil Moisture & Soil Temperature Monitoring Network for West Wales, UK: The WSMN Network. Sensors. 2017; 17(7):1481. https://doi.org/10.3390/s17071481
Chicago/Turabian StylePetropoulos, George P., and Jon P. McCalmont. 2017. "An Operational In Situ Soil Moisture & Soil Temperature Monitoring Network for West Wales, UK: The WSMN Network" Sensors 17, no. 7: 1481. https://doi.org/10.3390/s17071481
APA StylePetropoulos, G. P., & McCalmont, J. P. (2017). An Operational In Situ Soil Moisture & Soil Temperature Monitoring Network for West Wales, UK: The WSMN Network. Sensors, 17(7), 1481. https://doi.org/10.3390/s17071481