A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications
Abstract
:1. Introduction
2. The Metamaterial Unit Cell Configuration
2.1. Construction of the Structure
Design Parameter | Dimension (mm) | Design Parameter | Dimension (mm) |
---|---|---|---|
W1 | 9 | L3 | 0.484 |
W2 | 6 | g1 | 0.5 |
W3 | 2.64 | g2 | 0.5 |
W4 | 0.703 | s | 0.5 |
W5 | 0.528 | w | 0.5 |
L1 | 3.872 | rin | 1 |
L2 | 1.452 | rex | 2 |
2.2. Simulation Setup
2.3. Equivalent Circuit Model
2.4. Retrieval of the Effective Parameters
- , angular frequency
- Slab thickness
- Speed of light
Parameter | Negative Index Frequency Region (GHz) |
---|---|
Permeability, µr | 6.41–12.49 |
Permittivity, ɛr | 3–5.27, 8.42–9.96, 12.56–13.90, 14.11–15 |
Refractive index, nr | 3–3.31, 8.27–12.49, 12.78–13.87,14.70–15 |
3. The MTM Antenna
4. UWB Metamaterial Antenna
Parameter | Dimension (mm) | Parameter | Dimension (mm) |
---|---|---|---|
W | 19.36 | W4 | 4.676 |
L | 27.72 | L2 | 2.695 |
g | 1.32 | W5 | 3.575 |
W1 | 3.63 | L3 | 3.52 |
W2 | 2.78 | Lg | 27.72 |
W3 | 3.708 | W6 | 3.3 |
L1 | 9.51 | Wg | 19.36 |
5. Experimental Validation
Antennas | Application | BW GHz (−10 dB) | Dimension (mm2) | Electrical Dimension | FBW (%) | Gain dBi |
---|---|---|---|---|---|---|
[23] | Medical Imaging | 3.10–11.00 | 50 × 50 | 0.52 λ × 0.52 λ | 112.01 | 4.3~10.8 |
[25] | Ultra-Wideband | 5.20–13.90 | 25 × 25 | 0.43 λ × 0.43 λ | 91.01 | 1.2~3.85 |
[26] | Microwave Sensing | 2.70–9.70 | 22.25 × 20 | 0.20 λ × 0.18 λ | 112.90 | not reported |
[27] | Ultra-Wideband | 2.90–9.90 | 22 × 21 | 0.21 λ × 0.20 λ | 109.38 | −1.0~5.0 |
[28] | Microwave Imaging | 3.80–11.85 | 30 × 30 | 0.38 λ × 0.38 λ | 102.00 | not reported |
[29] | Microwave Imaging | 1.15–4.40 | 75 × 75 | 0.29 λ × 0.29 λ | 117.12 | 2.0~8.0 |
[30] | Microwave Imaging | 4.00–9.00 | 30 × 30 | 0.40 λ × 0.40 λ | 76.92 | 2.0~6.0 |
[31] | Microwave Imaging | 3.40–12.50 | 16 × 21 | 0.18 λ × 0.24 λ | 114.50 | 1.0~5.16 |
Proposed | Microwave Sensing | 3.10–15.00 | 19.36 × 27.72 | 0.20 λ × 0.29 λ | 131.50 | 1.2~6.57 |
6. Time Domain Performance
7. Imaging Results and Discussion
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ojaroudi, N.; Ghadimi, N. Omnidirectional microstrip monopole antenna design for use in microwave imaging systems. Microw. Opt. Technol. Lett. 2015, 57, 395–401. [Google Scholar] [CrossRef]
- Wang, Y.; Abbosh, A.; Henin, B. Microwave breast imaging sensor using compact and directive antenna with fixed mainbeam direction. In Proceedings of the 2012 Cairo International Biomedical Engineering Conference (CIBEC), Giza, Egypt, 20–22 December 2012; pp. 187–190.
- Veselago, V.G. The Electrodynamics of substances with simultaneously negative values of ϵ and μ. Sov. Phys. Uspekhi 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Pendry, J.; Holden, A.; Robbins, D.; Stewart, W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef]
- Smith, D.R.; Padilla, W.J.; Vier, D.; Nemat-Nasser, S.C.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000, 84. [Google Scholar] [CrossRef] [PubMed]
- Rusni, I.M.; Ismail, A.; Alhawari, A.R.H.; Hamidon, M.N.; Yusof, N.A. An Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator for Dielectric Sensing Applications. Sensors 2014, 14, 13134–13148. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.J.; Huang, M.; Tang, H.; Zeng, J.; Dong, L. Metamaterial Sensors. Int. J. Antennas Propag. 2013, 2013. [Google Scholar] [CrossRef]
- Chen, T.; Li, S.; Sun, H. Metamaterials application in sensing. Sensors 2012, 12, 2742–2765. [Google Scholar] [CrossRef] [PubMed]
- Naqui, J.; Martín, F. Angular displacement and velocity sensors based on electric-LC (ELC) loaded microstrip lines. IEEE Sens. J. 2014, 14, 939–940. [Google Scholar] [CrossRef]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Odabasi, H.; Teixeira, F.; Guney, D. Electrically small, complementary electric-field-coupled resonator antennas. J. Appl. Phys. 2013, 113. [Google Scholar] [CrossRef]
- Isik, O.; Esselle, K.P. Analysis of spiral metamaterials by use of group theory. Metamaterials 2009, 3, 33–43. [Google Scholar] [CrossRef]
- Wang, J.; Qu, S.; Zhang, J.; Ma, H.; Yang, Y.; Gu, C.; Wu, X.; Xu, Z. A tunable left-handed metamaterial based on modified broadside-coupled split-ring resonators. Prog. Electromagn. Res. Lett. 2009, 6, 35–45. [Google Scholar] [CrossRef]
- Alici, K.B.; Ozbay, E. A planar metamaterial: Polarization independent fishnet structure. Photonics Nanostruct. Fundam. Appl. 2008, 6, 102–107. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, Z.; Feng, Q.; Cui, J.; Luo, X. Metamaterial composed of wire pairs exhibiting dual band negative refraction. Appl. Phys. B 2010, 98, 365–370. [Google Scholar] [CrossRef]
- Ekmekci, E.; Turhan-Sayan, G. Comparative investigation of resonance characteristics and electrical size of the double-sided SRR, BC-SRR and conventional SRR type metamaterials for varying substrate parameters. Prog. Electromagn. Res. B 2009, 12, 35–62. [Google Scholar] [CrossRef]
- Wang, J.; Qu, S.; Xu, Z.; Zhang, J.; Ma, H.; Yang, Y.; Gu, C. Broadband planar left-handed metamaterials using split-ring resonator pairs. Photonics Nanostruct. Fundam. Appl. 2009, 7, 108–113. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Y.; Zhao, X. Low losses left-handed materials with optimized electric and magnetic resonance. Appl. Phys. A 2010, 98, 643–649. [Google Scholar] [CrossRef]
- Zhou, J.; Koschny, T.; Zhang, L.; Tuttle, G.; Soukoulis, C.M. Experimental demonstration of negative index of refraction. Appl. Phys. Lett. 2006, 88. [Google Scholar] [CrossRef]
- Eleftheriades, G.V.; Iyer, A.K.; Kremer, P.C. Planar negative refractive index media using periodically LC loaded transmission lines. IEEE Trans. Microw. Theory Tech. 2002, 50, 2702–2712. [Google Scholar] [CrossRef]
- Daliri, A.; Galehdar, A.; Rowe, W.S.; John, S.; Wang, C.H.; Ghorbani, K. Quality factor effect on the wireless range of microstrip patch antenna strain sensors. Sensors 2014, 14, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Song, L.; Zhou, H.; Zhang, Z. A Compact Annular Ring Microstrip Antenna for WSN Applications. Sensors 2012, 12, 8663–8674. [Google Scholar] [CrossRef] [PubMed]
- Abbosh, A.M. Directive antenna for ultrawideband medical imaging systems. Int. J. Antennas Propag. 2008, 2008. [Google Scholar] [CrossRef]
- Majid, H.A.; Rahim, M.K.A.; Masri, T. Microstrip antenna’s gain enhancement using left-handed metamaterial structure. Prog. Electromagn. Res. M 2009, 8, 235–247. [Google Scholar] [CrossRef]
- Alhawari, A.R.H.; Ismail, A.; Mahdi, M.A.; Abdullah, R.S.A.R. Miniaturized ultra-wideband antenna using microstrip negative index metamaterial. Electromagnetics 2011, 31, 404–418. [Google Scholar] [CrossRef]
- Kanj, H.; Popovic, M. Miniaturized microstrip-fed “Dark Eyes” antenna for near-field microwave sensing. IEEE Antennas Wirel. Propag. Lett. 2005, 4, 397–401. [Google Scholar] [CrossRef]
- Nordin, M.A.W.; Islam, M.T.; Misran, N. Design of a compact ultrawideband metamaterial antenna based on the modified split-ring resonator and capacitively loaded strips unit cell. Prog. Electromagn. Res. 2013, 136, 157–173. [Google Scholar] [CrossRef]
- Hossain, I.; Noghanian, S.; Pistorius, S. A diamond shaped small planar ultra wide band (UWB) antenna for microwave imaging purpose. In Proceedings of the 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, USA, 10–15 June 2007; pp. 5713–5716.
- Wu, B.; Ji, Y.; Fang, G. Design and measurement of compact tapered slot antenna for UWB microwave imaging radar. In Proceedings of the 9th International Conference on Electronic Measurement & Instruments (ICEMI’09), Beijing, China, 16–19 August 2009; pp. 2-226–2-229.
- Adnan, S.; Abd-Alhameed, R.; Hraga, H.; Elfergani, I.; Noras, J.; Halliwell, R. Microstrip antenna for microwave imaging application. In Proceedings of the PIERS Proceedings, Marrakesh, Morocco, 20–23 March 2011; pp. 431–434.
- Islam, M.M.; Islam, M.T.; Samsuzzaman, M.; Faruque, M.R.I.; Misran, N.; Mansor, M.F. A Miniaturized Antenna with Negative Index Metamaterial Based on Modified SRR and CLS Unit Cell for UWB Microwave Imaging Applications. Materials 2015, 8, 392–407. [Google Scholar] [CrossRef]
- Tang, W.X.; Cheng, Q.; Cui, T.J. Electric and magnetic responses from metamaterial unit cells at Terahertz. Terahertz Sci. Technol. 2009, 2. [Google Scholar] [CrossRef]
- Li, L.-W.; Yao, H.-Y.; Wu, Q.; Chen, Z.-N. Broad-bandwidth and low-loss metamaterials: Theory, design and realization. J. Zhejiang Univ. Sci. A 2006, 7, 5–23. [Google Scholar] [CrossRef]
- Saha, C.; Siddiqui, J.Y. Versatile CAD formulation for estimation of the resonant frequency and magnetic polarizability of circular split ring resonators. Int. J. RF Microw. Comput. Aided Eng. 2011, 21, 432–438. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Chen, Z.N.; Wu, X.H.; Li, H.F.; Yang, N.; Chia, M.Y.W. Considerations for source pulses and antennas in UWB radio systems. IEEE Trans. Antennas Propag. 2004, 52, 1739–1748. [Google Scholar] [CrossRef]
- Quintero, G.; Zurcher, J.-F.; Skriverviky, A. System fidelity factor: A new method for comparing UWB antennas. IEEE Trans. Antennas Propag. 2011, 59, 2502–2512. [Google Scholar] [CrossRef]
- Mehdipour, A.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.; Kashani-Khatib, M.-R. A novel coplanar waveguide-fed slot antenna for ultrawideband applications. IEEE Trans. Antennas Propag. 2008, 56, 3857–3862. [Google Scholar] [CrossRef]
- Amineh, R.K.; Ravan, M.; Trehan, A.; Nikolova, N.K. Near-field microwave imaging based on aperture raster scanning with TEM horn antennas. IEEE Trans. Antennas Propag. 2011, 59, 928–940. [Google Scholar] [CrossRef]
- Lazebnik, M.; McCartney, L.; Popovic, D.; Watkins, C.B.; Lindstrom, M.J.; Harter, J.; Sewall, S.; Ogilvie, T.; Magliocco, A.; Breslin, T.M.; et al. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries. Phys. Med. Biol. 2007, 52, 6093–6115. [Google Scholar] [CrossRef] [PubMed]
- Amineh, R.K.; Trehan, A.; Nikolova, N.K. TEM horn antenna for ultra-wide band microwave breast imaging. Prog. Electromagn. Res. B 2009, 13, 59–74. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.T.; Islam, M.M.; Samsuzzaman, M.; Faruque, M.R.I.; Misran, N. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications. Sensors 2015, 15, 11601-11627. https://doi.org/10.3390/s150511601
Islam MT, Islam MM, Samsuzzaman M, Faruque MRI, Misran N. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications. Sensors. 2015; 15(5):11601-11627. https://doi.org/10.3390/s150511601
Chicago/Turabian StyleIslam, Mohammad Tariqul, Md. Moinul Islam, Md. Samsuzzaman, Mohammad Rashed Iqbal Faruque, and Norbahiah Misran. 2015. "A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications" Sensors 15, no. 5: 11601-11627. https://doi.org/10.3390/s150511601
APA StyleIslam, M. T., Islam, M. M., Samsuzzaman, M., Faruque, M. R. I., & Misran, N. (2015). A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications. Sensors, 15(5), 11601-11627. https://doi.org/10.3390/s150511601