Monitoring of Low Levels of Furfural in Power Transformer Oil with a Sensor System Based on a POF-MIP Platform
Abstract
:1. Introduction
2. Experimental Section and Material and Methods
2.1. POF-MIP Platform and Experimental Setup
2.2. MIP Sensing Layer
2.3. Laboratory Procedure
2.4. Oil Samples
Chemical Agent | Method | Unit | CT.134 | CT.729 |
---|---|---|---|---|
Total gas concentration | IEC 60567 | μL/L | 78,579 | 65,611 |
Furfural (2-FAL) | IEC 61189 | ppm | 0.112 | 0.114 |
Σ furan derivatives | ppm | <0.010 | <0.010 | |
Methanol | ppm | 0.567 | 0.408 | |
Ethanol | ppm | 0.306 | 0.250 |
3. Results and Discussion
3.1. Characterization of the POF-MIP Sensor for Furfural (2-FAL) Detection in Fresh Transformer Oil
POF-MIP Sensor | Δλlim (nm) | Kd (ppm) | h | Adj R-Square |
---|---|---|---|---|
P1 | 0.92 (5) | 0.024 (5) | 1.6 (3) | 0.9677 |
P2 | 1.58 (0.09) | 0.020 (3) | 1.3 (3) | 0.9506 |
3.2. Furfural in Ex-Service Transformer Oil Samples
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lundgaard, L.E.; Hansen, W.; Linhjell, D.; Painter, T.J. Aging of oil-impregnated paper in power transformers. IEEE Trans. Power Deliv. 2004, 19, 230–239. [Google Scholar] [CrossRef]
- Duval, M. A Review of Faults Detectable by Gas-in-Oil Analysis in Transformers. IEEE Electr. Insul. Mag. 2002, 18, 8–17. [Google Scholar] [CrossRef]
- Insulating Oil Regeneration and Dehalogenation; CIGRE: Paris, France, April 2010.
- Bertrand, Y.; Tran-duy, C.; Murin, V.; Schaut, A.; Autru, S.; Eeckhoudt, S. MV/LV Distribution Transformer: Research on Paper Ageing Markers; CIGRE D1-103; CIGRE: Paris, France, 2012. [Google Scholar]
- Jalbert, J.; Duchesne, S.; Rodiguez-Celis, E.; Tétreault, P.; Collin, P. Robust and sensitive analysis of methanol and ethanol from cellulose degradation in mineral oils. J. Chromatogr. A 2012, 1256, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Miyagi, K.; Oe, E.; Yamagata, N. Evaluation of aging for thermally upgraded paper in mineral oil. J. Int. Counc. Electr. Eng. 2011, 1, 181–187. [Google Scholar] [CrossRef]
- IEC 60450 Ed2.0, Measurement of the Average Viscometric Degree of Polymerization of New and Aged Cellulosic Electrically Insulating Materials; International Electrotechnical Commission: Geneva, Switzerland, 19 April 2004.
- IEC 62874 TR Ed.1.0,Guide to the Interpretation of Carbon Dioxide and 2-Furfuraldehyde as Markers of Paper Thermal Degradation in Insulating Mineral Oil; Danish Standard: Charlottenlund, Denmark, 2015.
- Nasrat, L.S.; Kassem, N.; Shukry, N. Aging Effect on Characteristics of Oil Impregnated Insulation Paper for Power Transformers. Engineering 2013, 5, 1–7. [Google Scholar] [CrossRef]
- Schaut, A.; Eeckhoudt, S. Identification of Early-Stage Paper Degradation by Methanol; A2-107; CIGRE: Paris, France, 2012. [Google Scholar]
- Jalbert, J; Gilbert, R.; Tetreault, P.; Morin, B.; Lessard-Deziel, D. Identification of a chemical indicator of the rupture of 1,4-b-glycosidic bonds of cellulose in an oil-impregnated insulating paper system. Cellulose 2007, 14, 295–309. [Google Scholar] [CrossRef]
- Gray, I.A.R. Evaluation of Transformer Solid Insulation. Available online: http://www.satcs.co.za/Evaluation_of_Transformer_Solid_Insulation-rev2.pdf (acceded on 29 October 2012).
- IEC 61198 Ed.1.0, Mineral Insulating Oils—Methods for the Determination of 2-Furfural and Related Compounds; International Electrotechnical Commission: Geneva, Switzerland, 30 September 1993.
- Shamsipur, M.; Beigi, A.; Teymouri, M.; Rasoolipour, S.; Asfari, Z. Highly Sensitive and Selective Poly(vinyl chloride)-Membrane Potentiometric Sensors Based on a Calix[4]arene Derivative for 2-Furaldehyde. Anal. Chem. 2009, 81, 6789–6796. [Google Scholar] [CrossRef] [PubMed]
- Bosworth, T.; Setford, S.; Heywood, R.; Saini, S. Pulsed amperometric detection of furan compounds in transformer oil. Anal. Chim. Acta 2001, 450, 253–261. [Google Scholar] [CrossRef]
- Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2003, 377, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.; Shankar, P.M.; Mutharasan, R. A review of fiber-optic biosensors. Sens. Actuators B Chem. 2007, 125, 688–703. [Google Scholar] [CrossRef]
- Cennamo, N.; Massarotti, D.; Conte, L.; Zeni, L. Low cost sensors based on SPR ina plastic optical fiber for biosensor implementation. Sensors 2011, 11, 11752–11760. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; D’Agostino, G.; Galatus, R.; Bibbò, L.; Pesavento, M.; Zeni, L. Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene. Sens. Actuators B Chem. 2013, 188, 221–226. [Google Scholar] [CrossRef]
- Mayes, A.G.; Mosbach, K. Molecularly imprinted polymers: Useful materials for analytical chemistry? Trends Anal. Chem. 1997, 16, 321–332. [Google Scholar] [CrossRef]
- Haupt, K.; Mosbach, K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 2000, 100, 2495–2504. [Google Scholar] [CrossRef] [PubMed]
- Piletska, E.V.; Romero-Guerra, M.; Guerreiro, A.R.; Karim, K.; Turner, A.P.F.; Piletsky, S.A. Adaptation of the molecular imprinted polymers towards polar environment. Anal. Chim. Acta 2005, 542, 47–51. [Google Scholar] [CrossRef]
- Pietrzyk, A.; Suriyanarayanan, S.; Kutner, W.; Chitta, R.; D’Souza, F. Selective histamine piezoelectric chemosensor using a recognition film of the molecularly imprinted polymer of bis(bithiophene) derivatives. Anal. Chem. 2009, 81, 2633–2643. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; D’Agostino, G.; Pesavento, M.; Zeni, L. High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine. Sens. Actuators B Chem. 2014, 191, 529–536. [Google Scholar] [CrossRef]
- Lépinay, S.; Ianoul, A.; Albert, J. Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules. Talanta 2014, 128, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; Zeni, L.; De Maria, L.; D’Agostino, G.; Pesavento, M. Optical chemical sensor for oil-filled power transformer. In Proceedings of the 2014 Fotonica AEIT Italian Conference on Photonics Technologies, Naples, Italy, 12–14 May 2014; pp. 1–3.
- Kurganov, B.I.; Lobanov, A.V.; Borisov, I.A.; Reshetilov, A.N. Criterion for Hill equation validity for description of biosensor calibration curves. Anal. Chim. Acta 2001, 427, 11–19. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cennamo, N.; De Maria, L.; D'Agostino, G.; Zeni, L.; Pesavento, M. Monitoring of Low Levels of Furfural in Power Transformer Oil with a Sensor System Based on a POF-MIP Platform. Sensors 2015, 15, 8499-8511. https://doi.org/10.3390/s150408499
Cennamo N, De Maria L, D'Agostino G, Zeni L, Pesavento M. Monitoring of Low Levels of Furfural in Power Transformer Oil with a Sensor System Based on a POF-MIP Platform. Sensors. 2015; 15(4):8499-8511. https://doi.org/10.3390/s150408499
Chicago/Turabian StyleCennamo, Nunzio, Letizia De Maria, Girolamo D'Agostino, Luigi Zeni, and Maria Pesavento. 2015. "Monitoring of Low Levels of Furfural in Power Transformer Oil with a Sensor System Based on a POF-MIP Platform" Sensors 15, no. 4: 8499-8511. https://doi.org/10.3390/s150408499
APA StyleCennamo, N., De Maria, L., D'Agostino, G., Zeni, L., & Pesavento, M. (2015). Monitoring of Low Levels of Furfural in Power Transformer Oil with a Sensor System Based on a POF-MIP Platform. Sensors, 15(4), 8499-8511. https://doi.org/10.3390/s150408499