Next Article in Journal
A Lossless Multichannel Bio-Signal Compression Based on Low-Complexity Joint Coding Scheme for Portable Medical Devices
Next Article in Special Issue
Laser Spot Tracking Based on Modified Circular Hough Transform and Motion Pattern Analysis
Previous Article in Journal
Calibration of Action Cameras for Photogrammetric Purposes
Previous Article in Special Issue
Assessment of Eye Fatigue Caused by 3D Displays Based on Multimodal Measurements
Article Menu

Export Article

Open AccessArticle
Sensors 2014, 14(9), 17491-17515;

Estimation of Eye Closure Degree Using EEG Sensors and Its Application in Driver Drowsiness Detection

Department of Electronic Engineering, Pukyong National University, Busan 608-737, Korea
Author to whom correspondence should be addressed.
Received: 20 August 2014 / Revised: 11 September 2014 / Accepted: 11 September 2014 / Published: 18 September 2014
(This article belongs to the Special Issue HCI In Smart Environments)
Full-Text   |   PDF [3367 KB, uploaded 18 September 2014]


Currently, driver drowsiness detectors using video based technology is being widely studied. Eyelid closure degree (ECD) is the main measure of the video-based methods, however, drawbacks such as brightness limitations and practical hurdles such as distraction of the drivers limits its success. This study presents a way to compute the ECD using EEG sensors instead of video-based methods. The premise is that the ECD exhibits a linear relationship with changes of the occipital EEG. A total of 30 subjects are included in this study: ten of them participated in a simple proof-of-concept experiment to verify the linear relationship between ECD and EEG, and then twenty participated in a monotonous highway driving experiment in a driving simulator environment to test the robustness of the linear relationship in real-life applications. Taking the video-based method as a reference, the Alpha power percentage from the O2 channel is found to be the best input feature for linear regression estimation of the ECD. The best overall squared correlation coefficient (SCC, denoted by r2) and mean squared error (MSE) validated by linear support vector regression model and leave one subject out method is r2 = 0.930 and MSE = 0.013. The proposed linear EEG-ECD model can achieve 87.5% and 70.0% accuracy for male and female subjects, respectively, for a driver drowsiness application, percentage eyelid closure over the pupil over time (PERCLOS). This new ECD estimation method not only addresses the video-based method drawbacks, but also makes ECD estimation more computationally efficient and easier to implement in EEG sensors in a real time way. View Full-Text
Keywords: driver drowsiness detection; eyelid closure degree; EEG; linear regression driver drowsiness detection; eyelid closure degree; EEG; linear regression
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

MDPI and ACS Style

Li, G.; Chung, W.-Y. Estimation of Eye Closure Degree Using EEG Sensors and Its Application in Driver Drowsiness Detection. Sensors 2014, 14, 17491-17515.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top