Translation Elongation Factor 1-Alpha Sequencing Provides Reliable Tool for Identification of Fusarium graminearum Species Complex Members
Abstract
:1. Introduction
2. Materials and Methods
2.1. FGSC Isolate Sequences, Format Converting, and Preparing Samples for Alignment
- (i)
- The first of these three aligned “.fasta” files, named Set I, included F. asiaticum alignment with 107 isolates (not containing Fgss).
- (ii)
- The second one, named Set II, included Fgss alignment with 115 isolates (not containing F. asiaticum).
- (iii)
- The third one, named Set III, included all 248 isolates.
2.2. Distance-Based Phylogenetic Methods
2.3. Character-Based Phylogenetic Methods
2.4. Principal Component Analysis (PCA) by RStudio
3. Results and Discussion
3.1. Distance-Based Phylogenetic Analysis
3.2. Character-Based Phylogenetic Analysis
3.3. PCA-Based Similarity Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- McMullen, M.; Jones, R.; Gallenberg, D. Scab of Wheat and Barley: A Re-emerging Disease of Devastating Impact. Plant Dis. 1997, 81, 1340–1348. [Google Scholar] [CrossRef] [PubMed]
- Parry, D.W.; Jenkinson, P.; McLE, L. Fusarium ear blight (scab) in small grain cereals—A review. Plant Pathol. 1995, 44, 207–238. [Google Scholar] [CrossRef]
- Yli-Manila, T.; Gagkaeva, T.Y. Fusarium toxins in cereals in northern Europe and Asia. In Fungi; CRC Press: Boca Raton, FL, USA, 2018; pp. 293–317. [Google Scholar]
- Desjardins, A.E. Fusarium Mycotoxins: Chemistry, Genetics, and Biology. 2006. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20063036927 (accessed on 14 July 2024).
- Desjardins, A.E.; Proctor, R.H. Molecular biology of Fusarium mycotoxins. Int. J. Food Microbiol. 2007, 119, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed]
- O’donnell, K.; Humber, R.A.; Geiser, D.M.; Kang, S.; Park, B.; Robert, V.A.R.G.; Crous, P.W.; Johnston, P.R.; Aoki, T.; Rooney, A.P.; et al. Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and Fusarium MLST. Mycologia 2012, 104, 427–445. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, P.; Chandler, E.; Draeger, R.C.; Gosman, N.E.; Simpson, D.R.; Thomsett, M.; Wilson, A.H. Molecular tools to study epidemiology and toxicology of Fusarium head blight of cereals. Eur. J. Plant Pathol. 2003, 109, 691–703. [Google Scholar] [CrossRef]
- Schilling, A. Polymerase chain reaction-based assays for species-specific detection of Fusarium culmorum, F. graminearum, and F. avenaceum. Phytopathology 1996, 86, 515–522. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, H.; Zhou, Y.; Xing, J.; Chen, J.; Yu, G.; Sun, X.; Wang, L. Identification and Genetic Division of Fusarium graminearum and Fusarium asiaticum by Species-Specific SCAR Markers. J. Phytopathol. 2014, 162, 81–88. [Google Scholar] [CrossRef]
- O’Donnell, K.; Kistler, H.C.; Tacke, B.K.; Casper, H.H. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA 2000, 97, 7905–7910. [Google Scholar] [CrossRef]
- O’Donnell, K.; Sarver, B.A.J.; Brandt, M.; Chang, D.C.; Noble-Wang, J.; Park, B.J.; Sutton, D.A.; Benjamin, L.; Lindsley, M.; Padhye, A.; et al. Phylogenetic Diversity and Microsphere Array-Based Genotyping of Human Pathogenic Fusaria, Including Isolates from the Multistate Contact Lens-Associated U.S. Keratitis Outbreaks of 2005 and 2006. J. Clin. Microbiol. 2007, 45, 2235–2248. [Google Scholar] [CrossRef]
- O’donnell, K.; Ward, T.J.; Aberra, D.; Kistler, H.C.; Aoki, T.; Orwig, N.; Kimura, M.; Bjørnstad, S.; Klemsdal, S.S. Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genet. Biol. 2008, 45, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Sarver, B.A.J.; Ward, T.J.; Gale, L.R.; Broz, K.; Kistler, H.C.; Aoki, T.; Nicholson, P.; Carter, J.; O’donnell, K. Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet. Biol. 2011, 48, 1096–1107. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, S.; Hou, R.; Zhao, Z.; Zheng, Q.; Xu, Q.; Zheng, D.; Wang, G.; Liu, H.; Gao, X.; et al. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog. 2011, 7, e1002460. [Google Scholar] [CrossRef] [PubMed]
- Garmendia, G.; Umpierrez-Failache, M.; Ward, T.J.; Vero, S. Development of a PCR-RFLP method based on the transcription elongation factor 1-gene to differentiate Fusarium graminearum from other species within the Fusarium graminearum species complex. Food Microbiol. 2018, 70, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Tunal, B.; Yrk, E.; Sefer, Ö.; Kansu, B.; Sharifnabi, B. First Report on Identification of Fusarium graminearum Species Complex Members from Turkey and Iran. Turk. J. Agric. Food Sci. Technol. 2019, 7, 1040–1045. [Google Scholar] [CrossRef]
- Qu, B.; Li, H.P.; Zhang, J.B.; Huang, T.; Carter, J.; Liao, Y.C.; Nicholson, P. Comparison of genetic diversity and pathogenicity of fusarium head blight pathogens from China and Europe by SSCP and seedling assays on wheat. Plant Pathol. 2008, 57, 642–651. [Google Scholar] [CrossRef]
- Wang, C.-L.; Cheng, Y.-H. Identification and trichothecene genotypes of Fusarium graminearum species complex from wheat in Taiwan. Bot. Stud. 2017, 58, 4. [Google Scholar] [CrossRef]
- Yörük, E.; Albayrak, G. Genetic characterization of Fusarium graminearum and F. culmorum isolates from Turkey by using random-amplified polymorphic DNA. Genetics and Molecular Research 2013, 12, 1360–1372. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, 78–82. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [PubMed]
- Hafez, M.; Abdelmagid, A.; Adam, L.R.; Daayf, F. Specific Detection and Identification of Fusarium graminearum Sensu Stricto Using a PCR-RFLP Tool and Specific Primers Targeting the Translational Elongation Factor 1α Gene. Plant Dis. 2020, 104, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- Boutigny, A.-L.; Gautier, A.; Basler, R.; Dauthieux, F.; Leite, S.; Valade, R.; Aguayo, J.; Ioos, R.; Laval, V. Metabarcoding targeting the EF1 alpha region to assess Fusarium diversity on cereals. PLoS ONE 2019, 14, e0207988. [Google Scholar] [CrossRef] [PubMed]
- Geiser, D.M.; Aoki, T.; Bacon, C.W.; Baker, S.E.; Bhattacharyya, M.K.; Brandt, M.E.; Brown, D.W.; Burgess, L.W.; Chulze, S.; Coleman, J.J.; et al. One Fungus, One Name: Defining the Genus Fusarium in a Scientifically Robust Way That Preserves Longstanding Use. Phytopathology 2013, 103, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Geiser, D.M.; Al-Hatmi, A.M.S.; Ao, T.; Arie, T.; Balmas, V.; Barnes, I.; Viljoen, A. Phylogenomic Analysis of a 55. 1-kb 19-Gene Dataset Resolves a Monophyletic Fusarium that Includes the Fusarium solani Species Complex. Phytopathology 2021, 111, 1064–1079. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.L.; Somma, S.; Proctor, R.H.; Stea, G.; Mulè, G.; Logrieco, A.F.; Pinto, V.F.; Moretti, A. Genetic Diversity in Fusarium graminearum from a Major Wheat-Producing Region of Argentina. Toxins 2011, 3, 1294–1309. [Google Scholar] [CrossRef] [PubMed]
- Bentley, A.R.; Cromey, M.G.; Farrokhi-Nejad, R.; Leslie, J.F.; Summerell, B.A.; Burgess, L.W. Fusarium crown and root rot pathogens associated with wheat and grass stem bases on the South Island of New Zealand. Australas. Plant Pathol. 2006, 35, 495. [Google Scholar] [CrossRef]
- Minati, M.H.; Mohammed-Ameen, M.K. Novel report on six Fusarium species associated with head blight and crown rot of wheat in Basra province, Iraq. Bull. Natl. Res. Cent. 2019, 43, 139. [Google Scholar] [CrossRef]
- Stępniewska, H.; Jankowiak, R.; Bilański, P.; Hausner, G. Structure and Abundance of Fusarium Communities Inhabiting the Litter of Beech Forests in Central Europe. Forests 2021, 12, 811. [Google Scholar] [CrossRef]
- Fernández-Ortuño, D.; Loza-Reyes, E.; Atkins, S.L.; Fraaije, B.A. The CYP51C gene, a reliable marker to resolve interspecific phylogenetic relationships within the Fusarium species complex and a novel target for species-specific PCR. Int. J. Food Microbiol. 2010, 144, 301–309. [Google Scholar] [CrossRef]
- Noel, Z.A.; Roze, L.V.; Breunig, M.; Trail, F. Endophytic Fungi as a Promising Biocontrol Agent to Protect Wheat from Fusarium graminearum Head Blight. Plant Dis. 2022, 106, 595–602. [Google Scholar] [CrossRef]
- Sanna, M.; Martino, I.; Guarnaccia, V.; Mezzalama, M. Diversity and Pathogenicity of Fusarium Species Associated with Stalk and Crown Rot in Maize in Northern Italy. Plants 2023, 12, 3857. [Google Scholar] [CrossRef] [PubMed]
- Backeljau, T.; De Bruyn, L.; De Wolf, H.; Jordaens, K.; Van Dongen, S.; Winnepennincks, B. Multiple UPGMA and Neighbor-joining Trees and the Performance of Some Computer Packages. Mol. Biol. Evol. 1996, 13, 309–313. [Google Scholar] [CrossRef]
- Drummond, A.; Rodrigo, A.G. Reconstructing Genealogies of Serial Samples Under the Assumption of a Molecular Clock Using Serial-Sample UPGMA. Mol. Biol. Evol. 2000, 17, 1807–1815. [Google Scholar] [CrossRef]
- Michu, E. A short guide to phylogeny reconstruction. Plant Soil Environ. 2007, 53, 442–446. [Google Scholar] [CrossRef]
- Saitou, N. Property and efficiency of the maximum likelihood method for molecular phylogeny. J. Mol. Evol. 1988, 27, 261–273. [Google Scholar] [CrossRef]
No | Species | Sample Code | No | Species | Sample Code | No | Species | Sample Code | No | Species | Sample Code |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | F. acacia-mearnsii | A_OP245201 | 63 | F. asiaticum | C_KY466730 | 125 | Fgss | J_OR440886 | 187 | Fgss | J_OR440824 |
2 | F. acacia-mearnsii | A_MW233086 | 64 | F. asiaticum | C_KY466706 | 126 | Fgss | J_OR440885 | 188 | Fgss | J_OR440823 |
3 | F. aethiopicum | B_ON601768 | 65 | F. asiaticum | C_KY283938 | 127 | Fgss | J_OR440884 | 189 | Fgss | J_OR440822 |
4 | F. aethiopicum | B_MW233126 | 66 | F. asiaticum | C_KY283936 | 128 | Fgss | J_OR440883 | 190 | Fgss | J_OR440821 |
5 | F. asiaticum | C_LC489415 | 67 | F. asiaticum | C_KY283930 | 129 | Fgss | J_OR440882 | 191 | Fgss | J_OR440820 |
6 | F. asiaticum | C_LC500695 | 68 | F. asiaticum | C_KY283929 | 130 | Fgss | J_OR440881 | 192 | Fgss | J_OR440819 |
7 | F. asiaticum | C_MW233069 | 69 | F. asiaticum | C_KY283927 | 131 | Fgss | J_OR440879 | 193 | Fgss | J_OR689619 |
8 | F. asiaticum | C_OM721590 | 70 | F. asiaticum | C_KY283926 | 132 | Fgss | J_OR440880 | 194 | Fgss | J_OR689618 |
9 | F. asiaticum | C_MH448758 | 71 | F. asiaticum | C_KY283925 | 133 | Fgss | J_OR440878 | 195 | Fgss | J_MN308186 |
10 | F. asiaticum | C_MH448757 | 72 | F. asiaticum | C_KY283924 | 134 | Fgss | J_OR440877 | 196 | Fgss | J_MF974407 |
11 | F. asiaticum | C_MH448756 | 73 | F. asiaticum | C_KY283922 | 135 | Fgss | J_OR440876 | 197 | Fgss | J_LC796865 |
12 | F. asiaticum | C_MH448755 | 74 | F. asiaticum | C_KY283917 | 136 | Fgss | J_OR440875 | 198 | Fgss | J_LC796848 |
13 | F. asiaticum | C_MH448754 | 75 | F. asiaticum | C_KY283915 | 137 | Fgss | J_OR440874 | 199 | Fgss | J_LC796847 |
14 | F. asiaticum | C_MH448753 | 76 | F. asiaticum | C_KY283912 | 138 | Fgss | J_OR440873 | 200 | Fgss | J_OR529761 |
15 | F. asiaticum | C_MH448752 | 77 | F. asiaticum | C_KY283907 | 139 | Fgss | J_OR440872 | 201 | Fgss | J_OR528697 |
16 | F. asiaticum | C_MH448751 | 78 | F. asiaticum | C_KY283905 | 140 | Fgss | J_OR440871 | 202 | Fgss | J_OR528696 |
17 | F. asiaticum | C_MH448750 | 79 | F. asiaticum | C_KY283903 | 141 | Fgss | J_OR440870 | 203 | Fgss | J_OR528695 |
18 | F. asiaticum | C_MH448749 | 80 | F. asiaticum | C_KY283895 | 142 | Fgss | J_OR440869 | 204 | Fgss | J_OR528694 |
19 | F. asiaticum | C_MH448748 | 81 | F. asiaticum | C_KY283886 | 143 | Fgss | J_OR440868 | 205 | Fgss | J_OR528693 |
20 | F. asiaticum | C_KY466790 | 82 | F. asiaticum | C_KY283888 | 144 | Fgss | J_OR440867 | 206 | Fgss | J_OR424554 |
21 | F. asiaticum | C_KY466787 | 83 | F. asiaticum | C_KY283885 | 145 | Fgss | J_OR440866 | 207 | Fgss | J_OR424551 |
22 | F. asiaticum | C_KY466786 | 84 | F. asiaticum | C_KY283879 | 146 | Fgss | J_OR440865 | 208 | Fgss | J_OR424549 |
23 | F. asiaticum | C_KY466785 | 85 | F. asiaticum | C_KY283877 | 147 | Fgss | J_OR440864 | 209 | Fgss | J_OR424548 |
24 | F. asiaticum | C_KY466784 | 86 | F. asiaticum | C_KY283876 | 148 | Fgss | J_OR440863 | 210 | Fgss | J_OR424546 |
25 | F. asiaticum | C_KY466782 | 87 | F. asiaticum | C_KY283875 | 149 | Fgss | J_OR440862 | 211 | Fgss | J_OR424541 |
26 | F. asiaticum | C_KY466781 | 88 | F. asiaticum | C_KY283874 | 150 | Fgss | J_OR440861 | 212 | Fgss | J_OR424540 |
27 | F. asiaticum | C_KY466778 | 89 | F. asiaticum | C_KY283862 | 151 | Fgss | J_OR440860 | 213 | Fgss | J_OQ925578 |
28 | F. asiaticum | C_KY466777 | 90 | F. asiaticum | C_KY283867 | 152 | Fgss | J_OR440859 | 214 | Fgss | J_OQ925577 |
29 | F. asiaticum | C_KY466776 | 91 | F. asiaticum | C_KY283861 | 153 | Fgss | J_OR440858 | 215 | F. meridionale | K_PP034521 |
30 | F. asiaticum | C_KY466775 | 92 | F. asiaticum | C_KX702562 | 154 | Fgss | J_OR440857 | 216 | F. meridionale | K_MW233092 |
31 | F. asiaticum | C_KY466771 | 93 | F. asiaticum | C_KX702559 | 155 | Fgss | J_OR440856 | 217 | F. meridionale | K_MG838991 |
32 | F. asiaticum | C_KY466770 | 94 | F. asiaticum | C_DQ295124 | 156 | Fgss | J_OR440855 | 218 | F. meridionale | K_MG838988 |
33 | F. asiaticum | C_KY466769 | 95 | F. asiaticum | C_DQ295123 | 157 | Fgss | J_OR440854 | 219 | F. meridionale | K_MG838955 |
34 | F. asiaticum | C_KY466768 | 96 | F. asiaticum | C_HQ214263 | 158 | Fgss | J_OR440853 | 220 | F. meridionale | K_MG838949 |
35 | F. asiaticum | C_KY466767 | 97 | F. austroamericanum | D_MW233095 | 159 | Fgss | J_OR440852 | 221 | F. meridionale | K_MG838948 |
36 | F. asiaticum | C_KY466766 | 98 | F. boothii | E_OP245207 | 160 | Fgss | J_OR440851 | 222 | F. meridionale | K_MG838947 |
37 | F. asiaticum | C_KY466765 | 99 | F. boothii | E_OP245206 | 161 | Fgss | J_OR440850 | 223 | F. meridionale | K_MH448800 |
38 | F. asiaticum | C_KY466764 | 100 | F. boothii | E_OP245205 | 162 | Fgss | J_OR440849 | 224 | F. meridionale | K_MH448801 |
39 | F. asiaticum | C_KY466763 | 101 | F. boothii | E_OP245204 | 163 | Fgss | J_OR440848 | 225 | F. meridionale | K_MH448802 |
40 | F. asiaticum | C_KY466762 | 102 | F. boothii | E_PP035520 | 164 | Fgss | J_OR440847 | 226 | F. meridionale | K_MH448803 |
41 | F. asiaticum | C_KY466761 | 103 | F. boothii | E_PP035519 | 165 | Fgss | J_OR440846 | 227 | F. meridionale | K_MH448796 |
42 | F. asiaticum | C_KY466760 | 104 | F. boothii | E_ON601969 | 166 | Fgss | J_OR440845 | 228 | F. meridionale | K_MH448797 |
43 | F. asiaticum | C_KY466759 | 105 | F. boothii | E_ON601968 | 167 | Fgss | J_OR440844 | 229 | F. meridionale | K_MH448798 |
44 | F. asiaticum | C_KY466757 | 106 | F. boothii | E_ON601967 | 168 | Fgss | J_OR440843 | 230 | F. meridionale | K_MH448799 |
45 | F. asiaticum | C_KY466758 | 107 | F. boothii | E_MW233088 | 169 | Fgss | J_OR440842 | 231 | F. meridionale | K_KY466783 |
46 | F. asiaticum | C_KY466756 | 108 | F. boothii | E_KY794904 | 170 | Fgss | J_OR440841 | 232 | F. meridionale | K_KY466779 |
47 | F. asiaticum | C_KY466755 | 109 | F. brasilicum | F_MW233104 | 171 | Fgss | J_OR440840 | 233 | F. meridionale | K_KY466774 |
48 | F. asiaticum | C_KY466754 | 110 | F. cortaderiae | G_MW233098 | 172 | Fgss | J_OR440839 | 234 | F. meridionale | K_KY466773 |
49 | F. asiaticum | C_KY466752 | 111 | F. cortaderiae | G_MT193123 | 173 | Fgss | J_OR440838 | 235 | F. meridionale | K_KY466772 |
50 | F. asiaticum | C_KY466751 | 112 | F. cortaderiae | G_MT193124 | 174 | Fgss | J_OR440837 | 236 | F. meridionale | K_KY466735 |
51 | F. asiaticum | C_KY466749 | 113 | F. culmorum | H_OQ876777 | 175 | Fgss | J_OR440836 | 237 | F. meridionale | K_KY466733 |
52 | F. asiaticum | C_KY466747 | 114 | F. gerlachii | I_MW233118 | 176 | Fgss | J_OR440835 | 238 | F. meridionale | K_KY466732 |
53 | F. asiaticum | C_KY466746 | 115 | Fgss | J_OR440896 | 177 | Fgss | J_OR440834 | 239 | F. meridionale | K_KY466731 |
54 | F. asiaticum | C_KY466744 | 116 | Fgss | J_OR440895 | 178 | Fgss | J_OR440833 | 240 | F. meridionale | K_KY466718 |
55 | F. asiaticum | C_KY466743 | 117 | Fgss | J_OR440894 | 179 | Fgss | J_OR440832 | 241 | F. meridionale | K_HQ214262 |
56 | F. asiaticum | C_KY466740 | 118 | Fgss | J_OR440893 | 180 | Fgss | J_OR440831 | 242 | F. mesoamericanum | L_MW233083 |
57 | F. asiaticum | C_KY466741 | 119 | Fgss | J_OR440892 | 181 | Fgss | J_OR440830 | 243 | F. nepalense | M_MW233135 |
58 | F. asiaticum | C_KY466739 | 120 | Fgss | J_OR440891 | 182 | Fgss | J_OR440829 | 244 | F. solani | N_MG183712 |
59 | F. asiaticum | C_KY466738 | 121 | Fgss | J_OR440890 | 183 | Fgss | J_OR440828 | 245 | F. ussurianum | O_MW233125 |
60 | F. asiaticum | C_KY466737 | 122 | Fgss | J_OR440889 | 184 | Fgss | J_OR440826 | 246 | F. vorosii | P_MW233119 |
61 | F. asiaticum | C_KY466736 | 123 | Fgss | J_OR440888 | 185 | Fgss | J_OR440827 | 247 | F. vorosii | P_KY586243 |
62 | F. asiaticum | C_KY466734 | 124 | Fgss | J_OR440887 | 186 | Fgss | J_OR440825 | 248 | F. vorosii | P_MF974401 |
Set | Parsimony Informative Sites | Singleton Sites | Constant Sites | Gap/Ambiguity | Chi2 Test | Base Frequencies (A/C/G/T) |
---|---|---|---|---|---|---|
Set I | 246 | 120 | 405 | 18.13% | p < 0.05, df = 3 | 0.220/0.301/0.220/0.259 |
Set II | 36 | 158 | 554 | 20.38% | p < 0.05, df = 3 | 0.25/0.25/0.25/0.25 |
Set III | 293 | 124 | 344 | 19.73% | p < 0.05, df = 3 | 0.25/0.25/0.25/0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yörük, E.; Yli-Mattila, T. Translation Elongation Factor 1-Alpha Sequencing Provides Reliable Tool for Identification of Fusarium graminearum Species Complex Members. Diversity 2024, 16, 481. https://doi.org/10.3390/d16080481
Yörük E, Yli-Mattila T. Translation Elongation Factor 1-Alpha Sequencing Provides Reliable Tool for Identification of Fusarium graminearum Species Complex Members. Diversity. 2024; 16(8):481. https://doi.org/10.3390/d16080481
Chicago/Turabian StyleYörük, Emre, and Tapani Yli-Mattila. 2024. "Translation Elongation Factor 1-Alpha Sequencing Provides Reliable Tool for Identification of Fusarium graminearum Species Complex Members" Diversity 16, no. 8: 481. https://doi.org/10.3390/d16080481
APA StyleYörük, E., & Yli-Mattila, T. (2024). Translation Elongation Factor 1-Alpha Sequencing Provides Reliable Tool for Identification of Fusarium graminearum Species Complex Members. Diversity, 16(8), 481. https://doi.org/10.3390/d16080481