Ecological and Biogeographical Imprints in a Beech Glacial Refugium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Scheme
2.3. DNA Analyses
2.4. Vegetation Data Analyses
2.5. Genetic Data Analyses
2.6. Co-Occurrence between Haplotypes and Taxa
3. Results
3.1. Vegetation Data Classification
3.2. Vegetation Data Ordination
3.3. Haplotype Diversity
3.4. Haplotypes and Taxa Co-Occurrence
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vellend, M. Species diversity and genetic diversity: Parallel processes and correlated patterns. Am. Nat. 2005, 166, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Vellend, M.; Geber, M.A. Connections between species diversity and genetic diversity. Ecol. Lett. 2005, 8, 767–781. [Google Scholar] [CrossRef]
- Vellend, M.; Lajoie, G.; Bourret, A.; Murria, C.; Kembel, S.W.; Garant, D. Drawing ecological inferences from coincident patterns of population- and community-level biodiversity. Mol. Ecol. 2014, 23, 2890–2901. [Google Scholar] [CrossRef]
- Lamy, T.; Laroche, F.; David, P.; MAssol, F.; Jarne, P. The contribution of species-genetic diversity correlations to the understanding of community assembly rules. Oikos 2017, 126, 759–771. [Google Scholar] [CrossRef]
- Taberlet, P.; Zimmermann, N.E.; Englisch, T.; Tribsch, A.; Holderegger, R.; Alvarez, N.; NIklfeld, H.; Coldea, G.; Mirek, Z.; Moilanen, A.; et al. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol. Lett. 2012, 15, 1439–1448. [Google Scholar] [CrossRef]
- Fady, B.; Conord, C. Macroecological patterns of species and genetic diversity in vascular plants of the Mediterranean basin. Divers. Distrib. 2010, 16, 53–64. [Google Scholar] [CrossRef]
- Puscas, M.; Choler, P.; Taberlet, P. No positive correlation between species and genetic diversity in European alpine grasslands dominated by Carex curvula. Divers. Distrib. 2008, 14, 852–861. [Google Scholar] [CrossRef]
- Odat, N.; Hellwig, F.H.; Jetschke, G.; Fischer, M. On the relationship between plant species diversity and genetic diversity of Plantago lanceolata (Plantaginaceae) within and between grassland communities. J. Plant Ecol. 2010, 3, 41–48. [Google Scholar] [CrossRef]
- Wehenkel, C.; Bergmann, F.; Gregorius, H.R. Is there a trade-off between species diversity and genetic diversity in forest tree communities? Plant Ecol. 2006, 185, 151–161. [Google Scholar] [CrossRef]
- Hrivnák, M.; Krajmerová, D.; Hrivnák, R.; Slezák, M.; Kochjarová, J.; Jarolímek, I.; Gömöry, D. Interplay between tree genetic variation, plant community composition and environment in forest communities dominated by black alder (Alnus glutinosa (L.) Gaertn.). Perspect. Plant Ecol. 2023, 60, 125748. [Google Scholar] [CrossRef]
- Knollová, I.; Chytrý, M. Oak-hornbeam of the Czech Republic: Geographical and ecological approaches to vegetation classification. Preslia 2004, 76, 291–311. [Google Scholar]
- Tsiripidis, I.; Bergmeier, E.; Dimopoulos, P. Geographical and ecological differentiation in Greek Fagus forest vegetation. J. Veg. Sci. 2007, 18, 743–750. [Google Scholar] [CrossRef]
- Ouborg, N.J.; Piquot, Y.; Van Groenendael, J.M. Population genetics, molecular markers and the study of dispersal in plants. J. Ecol. 1999, 87, 551–568. [Google Scholar] [CrossRef]
- Huntley, B. How plants respond to climate change: Migration rates, individualism and the consequences for plant communities. Ann. Bot. 1991, 67, 15–22. [Google Scholar] [CrossRef]
- Prentice, I.C.; Jolly, D.; BIOME 6000 participants. Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J. Biogeogr. 2000, 27, 507–519. [Google Scholar] [CrossRef]
- Zacharias, M.A.; Roff, J.C. Use of focal species in marine conservation and management: A review and critique. Aquat. Conserv. 2001, 11, 59–76. [Google Scholar] [CrossRef]
- Li, Q.-M.; Cai, C.-N.; Xu, W.-M.; Cao, M.; Sha, L.-Q.; Lin, L.-X.; He, T.-H. Adaptive genetic diversity of dominant species contributes to species co-existence and community assembly. Plant Divers. 2022, 44, 271–278. [Google Scholar] [CrossRef]
- Thiel-Egenter, C.; Alvarez, N.; Holderegger, R.; Tribsch, A.; Englisch, T.; Wohlgemuth, T.; Colli, L.; Gaudeul, M.; Gielly, L.; Jogan, N.; et al. Break zones in the distributions of alleles and species in alpine plants. J. Biogeogr. 2011, 38, 772–782. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Anastasiou, I.; Spagopoulou, F.; Stalimerou, M.; Terzopoulou, S.; Legakis, A.; Vogler, A.P. Testing the species--genetic diversity correlation in the Aegean archipelago: Toward a haplotype-based macroecology? Am. Nat. 2011, 178, 241–255. [Google Scholar] [CrossRef]
- Bergmeier, E.; Dimopoulos, P. Fagus sylvatica forest vegetation in Greece: Syntaxonomy and gradient analysis. J. Veg. Sci. 2001, 12, 109–126. [Google Scholar] [CrossRef]
- Bohn, U.; Gollub, G.; Hettwer, C.; Neuhäuslová, Z.; Raus, T.; Schlüter, H.; Weber, H. (Eds.) Map of the Natural Vegetation of Europe. Interactive CD-ROM. Explanatory Text, Legend, Maps. Scale 1:2.500.000; Landwirtschaftsverlag: Münster, Germany, 2004. [Google Scholar]
- Aldén, B. Fagus L. In Mountain Flora of Greece 1; Strid, A., Ed.; Cambridge University Press: Cambridge UK, 1986; pp. 51–52. [Google Scholar]
- Akeroyd, J.A. Fagus L. In Flora Europaea, Vol. 1, Psilotaceae to Plataneceae, 2nd ed.; Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1993; p. 72. [Google Scholar]
- Christensen, K.I. Fagus L. In Flora Hellenica Vol. 1; Strid, A., Tan, K., Eds.; Koeltz: Königstein, Germany, 1997; pp. 40–41. [Google Scholar]
- Denk, T.; Grimm, G.; Stögerer, K.; Langer, M.; Hemleben, V. The evolutionary history of Fagus in western Eurasia: Evidence from genes, morphology and the fossil record. Plant Syst. Evol. 2002, 232, 213–236. [Google Scholar] [CrossRef]
- Denk, T. Phylogeny of Fagus L. (Fagaceae) based on morphological data. Plant Syst. Evol. 2003, 240, 55–81. [Google Scholar] [CrossRef]
- Dimopoulos, P.; Raus, T.; Bergmeier, E.; Constantinidis, T.; Iatrou, G.; Kokkini, S.; Tzanoudakis, D. Vascular Plants of Greece: An Annotated Checklist; Botanic Garden and Botanical Museum Berlin-Dahlem: Berlin, Germany, 2013. [Google Scholar]
- Tsiripidis, I.; Athanasiadis, N. Contribution to the knowledge of the vascular flora of NE Greece: Floristic composition of the beech (Fagus sylvatica L.) forests in the Greek Rodopi. Willdenowia 2003, 33, 273–297. [Google Scholar] [CrossRef]
- Papageorgiou, A.C.; Vidalis, A.; Gailing, O.; Tsiripidis, I.; Hatziskakis, S.; Boutsios, S.; Galatsidas, S.; Finkeldey, R. Genetic variation of beech (Fagus sylvatica L.) in Rodopi (N.E. Greece). Eur. J. For. Res. 2008, 127, 81–88. [Google Scholar] [CrossRef]
- Cardoni, S.; Piredda, R.; Denk, T.; Grimm, G.W.; Papageorgiou, A.C.; Schulze, E.D.; Scoppola, A.; Salehi Shanjani, P.; Suyama, Y.; Tomaru, N.; et al. 5S-IGS rDNA in wind-pollinated trees (Fagus L.) encapsulates 55 million years of reticulate evolution and hybrid origins of modern species. Plant J. 2022, 109, 909–926. [Google Scholar] [CrossRef]
- Tinner, W.; Lotter, A.F. Holocene expansions of Fagus sylvatica and Abies alba in Central Europe: Where are we after eight decades of debate? Quat. Sci. Rev. 2006, 25, 526–549. [Google Scholar] [CrossRef]
- Magri, D.; Vendramin, G.G.; Comps, B.; Dupanloup, I.; Geburek, T.; Gömöry, D.; Latgalowa, M.; Litt, T.; Paule, L.; Roure, J.M.; et al. A new scenario for the Quaternary history of European beech populations: Paleobotanical evidence and genetic consequences. New Phytol. 2006, 171, 199–221. [Google Scholar] [CrossRef] [PubMed]
- Tzedakis, P.C.; Lawson, I.T.; Frogley, M.R.; Hewitt, G.M.; Preece, R.C. Buffered tree population changes in a Quaternary refugium: Evolutionary implications. Science 2002, 297, 2044–2047. [Google Scholar] [CrossRef] [PubMed]
- Tsipidou, O.; Leinemann, L.; Korakis, G.; Finkeldey, R.; Gailing, O.; Papageorgiou, A.C. Fine-Scale Spatial Patterns of the Genetic Diversity of European Beech (Fagus sylvatica L.) around a Mountainous Glacial Refugium in the SW Balkans. Forests 2021, 12, 725. [Google Scholar] [CrossRef]
- Hatziskakis, S.; Papageorgiou, A.C.; Gailing, O.; Finkeldey, R. High chloroplast haplotype diversity in Greek populations of beech (Fagus sylvatica L.). Plant Biol. 2009, 11, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, A.C.; Tsiripidis, I.; Mouratidis, T.; Hatziskakis, S.; Gailling, O.; Eliades, N.-G.H.; Vidalis, A.; Drouzas, A.D.; Finkeldey, R. Complex fine-scale phylogeographical patterns in a putative refugial region for Fagus sylvatica (Fagaceae). Bot. J. Linn. Soc. 2014, 174, 516–528. [Google Scholar] [CrossRef]
- Müller, M.; Lopez, P.A.; Papageorgiou, A.C.; Tsiripidis, I.; Gailing, O. Indications of genetic admixture in the transition zone between Fagus sylvatica L. and Fagus sylvatica ssp. orientalis Greut. & Burd. Diversity 2019, 11, 90. [Google Scholar] [CrossRef]
- Willner, W.; Di Pietro, R.; Bergmeier, E. Phytogeographical evidence for post-glacial dispersal limitation of European beech forest species. Ecography 2009, 32, 1011–1018. [Google Scholar] [CrossRef]
- Marinšek, A.; Šilc, U.; Čarni, A. Geographical and ecological differentiation of Fagus forest vegetation in SE Europe. Appl. Veg. Sci. 2013, 16, 131–147. [Google Scholar] [CrossRef]
- Willner, W.; Jiménez-Alfaro, B.; Agrillo, E.; Biurrun, I.; Campos, J.A.; Cami, A.; Casella, L.; Csiky, J.; Gusterevska, R.; Didukh, Y.P.; et al. Classification of European beech forests: A Gordian Knot? App. Veg. Sci. 2017, 20, 494–512. [Google Scholar] [CrossRef]
- Tsiripidis, I.; Bergmeier, E.; Fotiadis, G.; Dimopoulos, P. A new algorithm for the determination of differential taxa. J. Veg. Sci. 2009, 20, 233–240. [Google Scholar] [CrossRef]
- Adamidis, G.C.; Varsamis, G.; Tsiripidis, I.; Dimitrakopoulos, P.G.; Papageorgiou, A.C. Patterns of leaf morphological traits of beech (Fagus sylvatica L.) along an altitudinal gradient. Forests 2021, 12, 1297. [Google Scholar] [CrossRef]
- Manolis, A. Genetic Diversity of Beech (Fagus sylvatica) in East Rodopi. Master’s Thesis, Department of Forestry, Environmental Management and Natural Resources, Democritus University of Thrace, Orestiada, Greece, 2011. [Google Scholar]
- Petrova, G.; Moyankova, D.; Nishii, K.; Forrest, L.; Tsiripidis, I.; Drouzas, A.D.; Djlianov, D.; Möller, M. The European paleoendemic Haberlea rhodopensis (Gesneriaceae) has an oligocene origin and a pleistocene diversification and occurs in a long-persisting refugial area in southeastern Europe. Int. J. Plant Sci. 2015, 176, 499–514. [Google Scholar] [CrossRef]
- Drouzas, A.D.; Charitonidou, M.; Tsiftsis, S. Chloroplast DNA variation in Epipactis atrorubens populations from northern Greece. Bot. Lett. 2017, 164, 55–62. [Google Scholar] [CrossRef]
- Košir, P.; Čarni, A.; Di Pietro, R. Classification and phytogeographical differentiation of broad-leaved ravine forests in southeastern Europe. J. Veg. Sci. 2008, 19, 331–342. [Google Scholar] [CrossRef]
- Mastrogianni, A.; Kallimanis, A.S.; Chytrý, M.; Tsiripidis, I. Phylogenetic diversity patterns in forests of a putative refugial area in Greece: A community level analysis. For. Ecol. Manag. 2019, 446, 226–237. [Google Scholar] [CrossRef]
- De Lafontaine, G.; Ducousso, A.; Lefèvre, S.; Magnanou, E.; Petit, R.J. Stronger spatial genetic structure in recolonized areas than in refugia in the European beech. Mol. Ecol. 2013, 22, 4397–4412. [Google Scholar] [CrossRef]
- Braun-Blanquet, J. Pflanzensoziologie. In Grundzüge der Vegetationskunde, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 1964. [Google Scholar]
- Wilmanns, O. Ökologische Pflanzensoziologie, 4th ed.; Aufl. Quelle & Meyer: Heidelberg, Germany, 1989. [Google Scholar]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. (Eds.) Flora Europaea; Cambridge University Press: Cambridge, UK, 1968; Volume 2. [Google Scholar]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. (Eds.) Flora Europaea; Cambridge University Press: Cambridge, UK, 1972; Volume 3. [Google Scholar]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. (Eds.) Flora Europaea; Cambridge University Press: Cambridge, UK, 1976; Volume 4. [Google Scholar]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. (Eds.) Flora Europaea; Cambridge University Press: Cambridge, UK, 1980; Volume 5. [Google Scholar]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. (Eds.) Flora Europaea, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993; Volume 1. [Google Scholar]
- Strid, A. (Ed.) Mountain Flora of Greece; Cambridge University Press: Cambridge, UK, 1986; Volume 1. [Google Scholar]
- Strid, A.; Tan, K. (Eds.) Flora Hellenica; Koeltz: Königstein, Germany, 1997; Volume 1. [Google Scholar]
- Strid, A.; Tan, K. (Eds.) Flora Hellenica; Koeltz: Königstein, Germany, 2002; Volume 2. [Google Scholar]
- Strid, A.; Tan, K. (Eds.) Mountain Flora of Greece; Edinburgh University Press: Edinburgh, UK, 1991; Volume 2. [Google Scholar]
- Dimopoulos, P.; Raus, T.; Bergmeier, E.; Constantinidis, T.; Iatrou, G.; Kokkini, S.; Strid, A.; Tzanoudakis, D. Vascular plants of Greece: An annotated checklist. Supplement. Willdenowia 2016, 46, 301–348. [Google Scholar] [CrossRef]
- Flora of Greece Web: Vascular Plants of Greece. An Annotated Checklist. Available online: https://portal.cybertaxonomy.org/flora-greece (accessed on 15 December 2023).
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Weising, K.; Gardner, R.C. A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 1999, 42, 9–19. [Google Scholar] [CrossRef]
- Gailing, O.; von Wuehlisch, G. Nuclear markers (AFLPs) and chloroplast microsatellites differ between Fagus sylvatica and Fagus orientalis. Silvae Genet. 2004, 53, 105–110. [Google Scholar] [CrossRef]
- Vettori, C.; Paffetti, D.; Paule, L.; Giannini, R. Identification of the Fagus sylvatica L. and Fagus orientalis lipsky species and intraspecific variability. For. Genet. 2004, 11, 223–230. [Google Scholar]
- Travaglini, D.; Paffetti, D.; Bianchi, L.; Bottacci, A.; Bottalico, F.; Giovannini, G.; Maltoni, A.; Nocentini, S.; Vettori, C.; Calamini, G. Characterization, structure and genetic dating of an old-growth beech-fir forest in the northern Apennines (Italy). Plant Biosyst. 2012, 146, 175–188. [Google Scholar] [CrossRef]
- Shanjani, P.S.; Vendramin, G.G.; Calagari, M. Genetic diversity and differentiation of Fagus orientalis Lipsky in Hyrcanian forests revealed by nuclear and chloroplast microsatellite markers. Conserv. Genet 2010, 11, 2321–2331. [Google Scholar] [CrossRef]
- Hill, M.O. TWINSPAN—A Fortran Program for Arranging Multivariate Data in an Ordered Two Way Table by Classification of the Individuals and the Attributes; Ecology & Systematics, Cornell University: Ithaca, NY, USA, 1979. [Google Scholar]
- Legendre, P.; Legendre, L. Numerical Ecology, 2nd ed.; English ed.; Elsevier Science: Amsterdam, The Netherlands, 1998. [Google Scholar]
- McCune, B.; Grace, J.B. Analysis of Ecological Communities; MJM Press: Gleneden Beach, OR, USA, 2002. [Google Scholar]
- Oksanen, J.; Guillaume, F.B.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.5-7. 2020. Available online: https://CRAN.R-project.org/package=vegan (accessed on 20 September 2023).
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions. R Package Version 2.1.2. 2021. Available online: https://CRAN.R-project.org/package=cluster (accessed on 20 September 2023).
- Chytrý, M.; Tichý, L.; Holt, J.; Botta-Dukát, J. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 2002, 13, 79–90. [Google Scholar] [CrossRef]
- Karagiannakidou, V.; Kokkini, S. The flora of Mount Menikion in North East Greece. Phyton 1987, 27, 267–283. [Google Scholar]
- Rohlf, F.J. A probabilistic minimum spanning tree algorithm. Inf. Process. Lett. 1978, 7, 44–48. [Google Scholar] [CrossRef]
- Excoffier, L.; Laval, G.; Schneider, S. Arlequin version 3.0: An integrated software package for population genetics data analysis. Evol. Bioinf. Online 2005, 1, 47–50. [Google Scholar] [CrossRef]
- Teacher, A.G.F.; Griffiths, D.J. HapStar: Automated haplotype network layout and visualisation. Mol. Ecol. Res. 2010, 11, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Pons, O.; Petit, R.J. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 1996, 144, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Corander, J.; Waldmann, P.; Sillanpää, M.J. Bayesian analysis of genetic differentiation between populations. Genetics 2003, 163, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Connor, T.R.; Sirén, J.; Aanensen, D.M.; Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 2013, 30, 1224–1228. [Google Scholar] [CrossRef]
- Corander, J.; Sirén, J.; Arjas, E. Bayesian Spatial Modelling of Genetic Population Structure. Comput. Stat. 2008, 23, 111–129. [Google Scholar] [CrossRef]
- Griffith, D.M.; Veech, J.A.; Marsh, C.J. Cooccur: Probabilistic Species Co-Occurrence Analysis in R. J. Stat. Softw. 2016, 69, 1–17. [Google Scholar] [CrossRef]
- Tsiripidis, I.; Karagiannakidou, V.; Alifragis, D.; Athanasiadis, N. Classification and gradient analysis of the beech forest vegetation of the southern Rodopi (Northeast Greece). Folia Geobot 2007, 42, 249–270. [Google Scholar] [CrossRef]
- European Environment Agency. Biogeographic Regions in Europe; European Environment Agency: Copenhagen, Denmark, 2012.
- Figliuolo, G. Landscape Genetics of Fagus sylvatica in One of Its Glacial Refuge Areas. In Wild Plants: Identification Uses, and Conservation; Davis, R.E., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2011; pp. 149–177. [Google Scholar]
- Hampe, A.; Petit, R.J. Conserving biodiversity under climate change: The rear edge matter. Ecol. Lett. 2005, 8, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Gomez, A.; Lunt, D. Refugia within Refugia: Patterns of Phylogeographic Concordance in the Iberian Peninsula. In Phylogeography of Southern European Refugia; Weiss, S., Ferrand, N., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 155–188. [Google Scholar]
- Petit, R.J.; Aguinagalde, I.; de Beaulieu, J.-L.; Bittkau, C.; Brewer, S.; Cheddadi, R.; Ennos, R.; Fineschi, S.; Griver, D.; Vendramin, G.G. Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 2003, 300, 1563–1565. [Google Scholar] [CrossRef] [PubMed]
- Strid, A.; University of Copenhagen, Copenhagen, Denmark. Personal communication, 2009.
- van der Maarel, E.; Franklin, J. Vegetation Ecology: Historical Notes and Outline. In Vegetation Ecology, 2nd ed.; van der Maarel, E., Franklin, J., Eds.; Wiley-Blackwell: Chicester, UK, 2013; pp. 1–27. [Google Scholar]
- Stewart, J.R.; Lister, A.M.; Barnes, I.; Dalén, L. Refugia revisited: Individualistic responses of species in space and time. Proc. R. Soc. B Biol. Sci. 2010, 277, 661–671. [Google Scholar] [CrossRef]
- Stewart, J.R. The progressive effect of the individualistic response of species to Quaternary climate change: An analysis of British mammalian faunas. Quat. Sci. Rev. 2008, 27, 2499–2508. [Google Scholar] [CrossRef]
- Aleksić, J.M.; Piotti, A.; Geburek, T.; Vendramin, G.G. Exploring and conserving a “microcosm”: Whole-population genetic characterization within a refugial area of the endemic, relict conifer Picea omorika. Conserv. Genet. 2017, 18, 777–788. [Google Scholar] [CrossRef]
Haplotypes | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Geographical Groups | N | h1 | h2 | h3 | h4 | h5 | h6 | h7 | h8 | h9 | n(a) | n(e) |
GG1 | 27 | 0.074 | 0.000 | 0.074 | 0.741 | 0.111 | 0.000 | 0.000 | 0.000 | 0.000 | 4 | 1.747 |
GG2 | 75 | 0.000 | 0.000 | 0.053 | 0.840 | 0.093 | 0.000 | 0.000 | 0.013 | 0.000 | 4 | 1.394 |
GG3 | 23 | 0.043 | 0.000 | 0.043 | 0.826 | 0.087 | 0.000 | 0.000 | 0.000 | 0.000 | 4 | 1.442 |
GG4 | 23 | 0.000 | 0.304 | 0.000 | 0.174 | 0.043 | 0.348 | 0.043 | 0.000 | 0.087 | 6 | 3.921 |
GG5 | 30 | 0.000 | 0.000 | 0.100 | 0.833 | 0.033 | 0.000 | 0.000 | 0.033 | 0.000 | 4 | 1.416 |
Total | 178 | 9 | 1.801 |
Haplotype | Taxon or Haplotype with Significant Association | Observed Number | Expected Number | Prob. Negative Assoc. | Prob. Positive Assoc. |
---|---|---|---|---|---|
h2 | h4 | 1 | 5.2 | 0.00006 | 1.00000 |
h2 | Fraxinus ornus | 1 | 3.5 | 0.04068 | 0.99646 |
h2 | Galium odoratum | 4 | 1.7 | 0.99444 | 0.04849 |
h2 | Hedera helix | 0 | 3.1 | 0.00949 | 1.00000 |
h2 | Lactuca muralis | 5 | 2.6 | 0.99540 | 0.04927 |
h2 | Physospermum cornubiense | 0 | 2.3 | 0.04644 | 1.00000 |
h2 | Prunus avium | 5 | 2.2 | 0.99851 | 0.02148 |
h2 | Quercus petraea ssp. polycarpa | 5 | 1.9 | 0.99946 | 0.01006 |
h3 | Carpinus betulus | 4 | 1.5 | 0.99579 | 0.03431 |
h3 | Luzula luzuloides | 1 | 3.9 | 0.03548 | 0.99645 |
h3 | Polygonatum odoratum | 8 | 3.8 | 0.99986 | 0.00270 |
h4 | h6 | 0 | 4.3 | 0.00001 | 1.00000 |
h4 | Cephalanthera rubra | 21 | 18.2 | 1.00000 | 0.02405 |
h4 | Epilobium montanum | 7 | 9.5 | 0.03087 | 0.99645 |
h4 | Fraxinus ornus | 34 | 30.3 | 0.99958 | 0.00700 |
h4 | Galium odoratum | 11 | 14.7 | 0.00470 | 0.99966 |
h4 | Hedera helix | 31 | 26.9 | 1.00000 | 0.00168 |
h4 | Prunus avium | 16 | 19.1 | 0.02316 | 0.99734 |
h4 | Scrophularia nodosa | 2 | 4.3 | 0.01427 | 0.99932 |
h4 | Symphytum tuberosum | 4 | 6.1 | 0.04346 | 0.99580 |
h4 | h2 | 1 | 5.2 | 0.00006 | 1.00000 |
h5 | Moehringia trinervia | 0 | 2.5 | 0.04231 | 1.00000 |
h6 | Cornus mas | 0 | 2.2 | 0.04346 | 1.00000 |
h6 | Galium odoratum | 4 | 1.4 | 0.99887 | 0.01987 |
h6 | Hedera helix | 0 | 2.6 | 0.02174 | 1.00000 |
h6 | Prunus avium | 5 | 1.8 | 1.00000 | 0.00482 |
h6 | h4 | 0 | 4.3 | 0.00001 | 1.00000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiripidis, I.; Stamellou, S.; Papageorgiou, A.C.; Drouzas, A.D. Ecological and Biogeographical Imprints in a Beech Glacial Refugium. Diversity 2024, 16, 152. https://doi.org/10.3390/d16030152
Tsiripidis I, Stamellou S, Papageorgiou AC, Drouzas AD. Ecological and Biogeographical Imprints in a Beech Glacial Refugium. Diversity. 2024; 16(3):152. https://doi.org/10.3390/d16030152
Chicago/Turabian StyleTsiripidis, Ioannis, Stavroula Stamellou, Aristotelis C. Papageorgiou, and Andreas D. Drouzas. 2024. "Ecological and Biogeographical Imprints in a Beech Glacial Refugium" Diversity 16, no. 3: 152. https://doi.org/10.3390/d16030152
APA StyleTsiripidis, I., Stamellou, S., Papageorgiou, A. C., & Drouzas, A. D. (2024). Ecological and Biogeographical Imprints in a Beech Glacial Refugium. Diversity, 16(3), 152. https://doi.org/10.3390/d16030152