Dragonfly Functional Diversity in Dinaric Karst Tufa-Depositing Lotic Habitats in a Biodiversity Hotspot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Environmental Variables
2.3. Dragonfly Sampling
2.4. Data Analysis
3. Results
3.1. Environmental Variables
3.2. Dragonfly Life History Traits and Functional Diversity at Different Karst Lotic Habitats
3.3. Dragonfly Functional Traits and Environmental Variables
3.4. Dragonfly Life History Traits and Functional Diversity at Different Substrate Types
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Knops, J.; Wedin, D.; Reich, P.; Ritchie, M.; Siemann, E. The influence of functional diversity and composition on ecosystem processes. Science 1997, 277, 1300–1302. [Google Scholar] [CrossRef]
- Nock, C.A.; Vogt, R.J.; Beisner, B.E. Functional Traits. In eLS; John Wiley & Sons Ltd.: Chichester, UK, 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Mammola, S.; Carmona, C.P.; Guillerme, T.; Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 2021, 35, 1869–1885. [Google Scholar] [CrossRef]
- McGill, B.J.; Enquist, B.J.; Weiher, E.; Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 2006, 21, 178–185. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Petchey, O.L.; Gaston, K.J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 2006, 9, 741–758. [Google Scholar] [CrossRef]
- Cordero-Rivera, A. Behavioral diversity (ethodiversity): A neglected level in the study of biodiversity. Front. Ecol. Evol. 2017, 5. [Google Scholar] [CrossRef]
- Tapolczai, K.; Bouchez, A.; Stenger-Kovács, P.A.; Padisák, J.; Rimet, F. Trait-based ecological classifications for benthic algae: Review and perspectives. Hydrobiologia 2016, 776, 1–17. [Google Scholar] [CrossRef]
- Schmidt-Kloiber, A.; Hering, D. www.freshwaterecology.info—An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 2015, 53, 271–282. [Google Scholar] [CrossRef]
- Tilman, D. Functional diversity. In Encyclopedia of Biodiversity; Levin, S.A., Ed.; Academic Press: San Diego, CA, USA, 2001; pp. 109–120. [Google Scholar]
- Villéger, S.; Mason, N.W.H.; Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 2008, 89, 2290–2301. [Google Scholar] [CrossRef]
- Bonacci, O.; Pipan, T.; Culver, D.C. A framework for karst ecohydrology. Environ. Geol. 2009, 56, 891–900. [Google Scholar] [CrossRef]
- Bonacci, O.; Željković, I.; Galić, A. Karst rivers’ particularity: An example from Dinaric karst (Croatia/Bosnia and Herzegovina). Environ. Earth Sci. 2013, 70, 963–974. [Google Scholar] [CrossRef]
- Srdoč, D. Procesi taloženja kalcita u krškim vodama s posebnim osvrtom na Plitvička jezera. Krš Jugosl. 1985, 11, 4–6. [Google Scholar]
- Gottstein Matočec, S.; Bakran-Petricioli, T.; Bedek, J.; Bukovec, D.; Buzjak, S.; Franičević, M.; Jalžić, B.; Kerovec, M.; Kletečki, E.; Kralj, J.; et al. An overview of the cave and interstitial biota of Croatia. Nat. Croat. 2002, 11, 1–112. [Google Scholar]
- Ivković, M.; Plant, A. Aquatic insects in the Dinarides: Identifying hotspots of endemism and species richness shaped by geological and hydrological history using Empididae (Diptera). Insect Conserv. Divers. 2015, 8, 302–312. [Google Scholar] [CrossRef]
- Gredar, T.; Šarac, A.; Prša, P.; Fišer, Ž.; Kostanjšek, R.; Bizjak Mali, L. Morphology and differential counts of blood cells as important health indicators in the olm. Proteus anguinus. Amphibia-Reptilia, 2024; ahead of print. [Google Scholar] [CrossRef]
- Previšić, A.; Walton, C.; Kučinić, M.; Mitrikeski, P.T.; Kerovec, M. Pleistocene divergence of Dinaric Drusus endemics (Trichoptera, Limnephilidae) in multiple microrefugia within the Balkan Peninsula. Mol. Ecol. 2009, 18, 634–647. [Google Scholar] [CrossRef]
- Simaika, J.P.; Samways, M.J. An easy-to-use index of ecological integrity for prioritizing freshwater sites and assessing habitat quality. Biodivers. Conserv. 2009, 18, 1171–1185. [Google Scholar] [CrossRef]
- Noss, R.F. Indicators for monitoring biodiversity: A hierarchical approach. Conserv. Biol. 1990, 4, 355–364. [Google Scholar] [CrossRef]
- Chovanec, A. Dragonflies (Insecta: Odonata) as indicators of the ecological integrity of aquatic systems—A new assessment approach. Verh. Int. Ver. Theor. Angew. Limnol. 2000, 27, 887–890. [Google Scholar] [CrossRef]
- May, M.L. Odonata: Who They Are and What They Have Done for Us Lately: Classification and Ecosystem Services of Dragonflies. Insects 2019, 10, 62. [Google Scholar] [CrossRef]
- Vilenica, M. Ecological traits of dragonfly (Odonata) assemblages along an oligotrophic Dinaric karst hydrosystem. Ann. Limnol.-Int. J. Limnol. 2017, 53, 377–389. [Google Scholar] [CrossRef]
- Vilenica, M.; Rebrina, F.; Matoničkin Kepčija, R.; Šegota, V.; Rumišek, M.; Ružanović, L.; Brigić, A. Aquatic Macrophyte Vegetation Promotes Taxonomic and Functional Diversity of Odonata Assemblages in Intermittent Karst Rivers in the Mediterranean. Diversity 2024, 14, 31. [Google Scholar] [CrossRef]
- Datto-Liberato, F.H.; Lopez, V.M.; Quinaia, T.; do Valle Junior, R.F.; Samways, M.J.; Juen, L.; Valera, C.; Guillermo-Ferreira, R. Total environment sentinels: Dragonflies as ambivalent/amphibiotic bioindicators of damage to soil and freshwater. Sci. Total Environ. 2024, 934, 173110. [Google Scholar] [CrossRef]
- Rivas-Torres, A.; Cordero-Rivera, A. A Review of the Density, Biomass, and Secondary Production of Odonates. Insects 2024, 15, 510. [Google Scholar] [CrossRef]
- Novella-Fernandez, R.; Chalmandrier, L.; Brandl, R.; Pinkert, S.; Zeuss, D.; Hof, C. Trait overdispersion in dragonflies reveals the role and drivers of competition in community assembly across space and season. Ecography 2023, 2024, e06918. [Google Scholar] [CrossRef]
- Bãnãrescu, P.M. Distribution pattern of the aquatic fauna of the Balkan Peninsula. In Balkan Biodiversity Pattern and Process in the European Hotspot; Griffith, H., Kryštufek, B., Reed, J.M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 203–219. [Google Scholar]
- Miliša, M.; Ivković, M. Plitvice Lakes. In Springer Water; Springer International Publishing: Cham, Switzerland, 2023; ISBN 978-3-031-20377-0. [Google Scholar]
- Vilenica, M.; Mičetić Stanković, V.; Sartori, M.; Kučinić, M.; Mihaljević, Z. Environmental factors affecting mayfly assemblages in tufa-depositing habitats of the Dinaric Karst. Knowl. Manag. Aquat. Ecosyst. 2017, 418, 14. [Google Scholar] [CrossRef]
- Stilinović, B.; Božičević, S. The Plitvice Lakes—A natural phenomenon in the middle of the Dinaric karst in Croatia. Eur. Water Manag. 1998, 1, 15–24. [Google Scholar]
- Šegota, T.; Filipčić, A. Köppenova podjela klima i hrvatsko nazivlje. Geoadria 2003, 8, 17–37. [Google Scholar] [CrossRef]
- Zaninović, K.; Gajić-Čapka, M.; Perčec Tadić, M.; Vučetić, M.; Milković, J.; Bajić, A.; Cindrić, K.; Cvitan, L.; Katušin, Z.; Kaučić, D.; et al. Klimatski atlas Hrvatske/Climate atlas of Croatia 1961–1990, 1971–2000; State Hydrometeorological Institute: Zagreb, Croatia, 2008; Available online: https://klima.hr/razno/publikacije/klimatski_atlas_hrvatske.pdf (accessed on 5 August 2024).
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Gerken, B.; Sternberg, K. Die Exuvien Europaïscher Libellen—The Exuviae of European Dragonflies (Insecta, Odonata); Arnika & Eisvogel/Huxaria Druckerei GmbH: Höxter/Jena, Germany, 1999; p. 354. [Google Scholar]
- Askew, R.R. The Dragonflies of Europe, 2nd ed.; Harley Books: Essex, UK, 2004; p. 308. [Google Scholar]
- Brochard, C.; Groendijk, D.; van der Ploeg, E.; Termaat, T. Fotogids Larvenhuidjes van Libellen; KNNV Uitgeverij: Zeist, The Netherlands, 2012; p. 320. [Google Scholar]
- StatSoft. STATISTICA 10.0 for Windows; StatSoft Inc.: Tulsa, OK, USA, 2010. [Google Scholar]
- Dijkstra, K.-D.B.; Wildermuth, H.; Martens, A. Freshwaterecology, Dataset “Odonata”. 2024. Available online: https://www.freshwaterecology.info/fwe_search.php?og=mzb (accessed on 20 July 2024).
- Ricotta, C.; Moretti, M. CWM and Rao’s quadratic diversity: A unified framework for functional ecology. Oecologia 2011, 167, 181–188. [Google Scholar] [CrossRef]
- ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination; Version 5.0; Micro-Computer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Miliša, M.; Habdija, I.; Primc-Habdija, B.; Radanović, I.; Matoničkin Kepčija, R. The role of flow velocity in the vertical distribution of particulate organic matter on moss-covered travertine barriers of the Plitvice Lakes (Croatia). Hydrobiologia 2006, 553, 231–243. [Google Scholar] [CrossRef]
- Gligora Udovič, M.; Cvetkoska, A.; Žutinić, P.; Bosak, S.; Stanković, I.; Špoljarić, I.; Mršić, G.; Kralj Borojević, K.; Ćukurin, A.; Plenković Moraj, A. Defining centric diatoms of most relevant phytoplankton functional groups in deep karst lakes. Hydrobiologia 2017, 788, 169–191. [Google Scholar] [CrossRef]
- Calijuri, M.L.; do Couto, E.A.; Santiago, A.F.; Camargo, R.A.; Silva, M.D.F.M. Evaluation of the influence of natural and anthropogenic processes on water quality in karstic region. Water Air Soil Pollut. 2012, 223, 2157–2168. [Google Scholar] [CrossRef]
- Antonović, I.; Treer, T. A review of freshwater ichthyofauna research published in the Croatian Journal of Fisheries since 1938. Croat. J. Fish. 2015, 73, 176–182. [Google Scholar] [CrossRef]
- Johansson, F.; Brodin, T. Effects of fish predators and abiotic factors on dragonfly community structure. J. Freshw. Ecol. 2003, 18, 415–423. [Google Scholar] [CrossRef]
- Dijkstra, K.D.B.; Lewington, R. Field Guide to the Dragonflies of Britain and Europe, 1st ed.; British Wildlife Publishing: Gillingham, UK, 2006; p. 230. [Google Scholar]
- Fekete, J.; De Knijf, G.; Dinis, M.; Padisák, J.; Boda, P.; Mizsei, E.; Várbíró, G. Winners and Losers: Cordulegaster species under the pressure of climate change. Insects 2023, 14, 348. [Google Scholar] [CrossRef]
- Pešić, V.; Gligorović, B.; Savić, A.; Buczyński, P. Ecological patterns of Odonata assemblages in karst springs in central Montenegro. Knowl. Manag. Aquat. Ecosyst. 2017, 418, 3. [Google Scholar] [CrossRef]
- Harabiš, F.; Dolný, A. The effects of ecological determinants on the dispersal abilities of central European dragonflies (Odonata). Odonatologica 2011, 40, 17–26. [Google Scholar]
- Hof, C.; Brändle, M.; Brandl, R. Lentic odonates have larger and more northern ranges than lotic species. J. Biogeogr. 2006, 33, 63–70. [Google Scholar] [CrossRef]
- Sertić Perić, M.; Jakopović, S.; Primc, B. Seasonal drift-benthos trends on a moss-covered tufa barrier within a karst barrage hydrosystem (Plitvice Lakes, Croatia). Nat. Croat. 2015, 24, 223–246. [Google Scholar] [CrossRef]
- Šemnički, P.; Previšić, A.; Ivković, M.; Čmrlec, K.; Mihaljević, Z. Tufa Barriers from a Caddisfly’s Point of View: Streams or Lake Outlets? Int. Rev. Hydrobiol. 2012, 97, 465–484. [Google Scholar] [CrossRef]
- Vilenica, M.; Ivković, M. A decade-long study on mayfly emergence patterns. Mar. Freshw. Res. 2020, 72, 507–519. [Google Scholar] [CrossRef]
- Pinilla-Rosa, M.; García-Saúco, G.; Santiago, A.; Ferrandis, P.; Méndez, M. Can botanic gardens serve as refuges for taxonomic and functional diversity of Odonata? The case of the botanic garden of Castilla–La Mancha (Spain). Limnology 2022, 24, 37–50. [Google Scholar] [CrossRef]
- Kučinić, M.; Previšić, A.; Vajdić, M.; Tunjić, M.; Mihoci, I.; Žalac, S.; Sviben, S.; Vučković, I.; Trupković, M.; Habdija, I. First systematic investigation of adults and second checklist of caddisflies of the Plitvice Lakes National Park with notes on research history, biodiversity, distribution and ecology. Nat. Croat. 2017, 26, 225–260. [Google Scholar] [CrossRef]
- Sertić Perić, M.; Matoničkin Kepčija, R.; Radanović, I.; Primc, B.; Habdija, I. Freshwater reefs as mesohabitats for the assessment of diel invertebrate drift patterns. Nat. Croat. 2020, 29, 185–203. [Google Scholar] [CrossRef]
- Vurnek, M.; Brozinčević, A.; Čulinović, K.; Novosel, A. Challenges in the Management of Plitvice Lakes National Park, Republic of Croatia. National Parks-Management and Conservation. In National Parks—Management and Conservation; Suratman, M.N., Ed.; IntechOpen: London, UK, 2018; pp. 55–72. [Google Scholar] [CrossRef]
- Takamura, K.; Hatakeyama, S.; Shiraishi, H. Odonata larvae as an indicator of pesticide contamination. Appl. Entomol. Zool. 1991, 26, 321–326. [Google Scholar] [CrossRef]
- Harabiš, F.; Dolný, A. Human altered ecosystems: Suitable habitats as well as ecological traps for dragonflies (Odonata): The matter of scale. J. Insect Conserv. 2012, 16, 121–130. [Google Scholar] [CrossRef]
- Vilenica, M.; Kerovec, M.; Pozojević, I.; Mihaljević, Z. Odonata assemblages in anthropogenically impacted lotic habitats. J. Limnol. 2020, 80, 1–9. [Google Scholar] [CrossRef]
- Corbet, P.; Brooks, S. Dragonflies. In Collins New Naturalist Library Series, Book 106; Harper Collins: London, UK, 2008; p. 480. [Google Scholar]
- Cíbik, J.; Beracko, P.; Bulánková, E.; Čiamporová Zaťovičová, Z.; Gregušová, K.; Kodada, J.; Derka, T. Are springs hotspots of benthic invertebrate diversity? Biodiversity and conservation priority of rheocrene springs in the karst landscape. Aquat. Conserv. Mar. Freshw. Ecosyst. 2022, 32, 843–858. [Google Scholar] [CrossRef]
Dragonfly Species/Habitat Type | Springs | Streams | Tufa Barriers |
---|---|---|---|
Gomphus vulgatissimus (Linnaeus, 1758) | X | ||
Onychogompus forcipatus (Linnaeus, 1758) | X | X | |
Cordulegaster bidentata (Selys, 1843) | X | X | |
Orthetrum coerulescens (Fabricius, 1798) | X | ||
Crocothemis erythraea (Brullé, 1832) | X | ||
Platycnemis pennipes (Pallas, 1771) | X | X | |
Calopteryx virgo (Linnaeus, 1758) | X | ||
Coenagrion puella (Linnaeus, 1758) | X | ||
Number of species (S) | 0 | 3 | 8 |
Functional Trait Group | Functional Trait | Explanation |
---|---|---|
Body type | Anisoptera | |
Zygoptera | ||
Dispersal capacity | High | |
Medium | ||
Stream zonation preference | Metarhithral | lower trout region |
Hyporhithral | grayling region | |
Epipotamal | barbel region | |
Metapotamal | bream region | |
Hypopotamal | brackish water region | |
Littoral | lentic habitats | |
Lateral connectivity preference | Eupotamon | lotic habitats |
Parapotamon | ||
Plesiopotamon (including lakes) | lentic habitats | |
Palaeopotamon (including pools, ponds) | ||
Temporary waterbodies | ||
Current preference | Limnophile | preferring lentic habitats, rarely also occur in slow-flowing lotic habitats |
Limno- to rheophile | preferring lentic habitats, but often also in slowly flowing lotic habitats | |
Rheo- to limnophile | preferring slow-flowing lotic habitats and their lentic zones, can also be found in lentic habitats | |
Rheophile | occurring in lotic habitats, preferably with moderate and fast water velocity | |
Substrate type preference | Argyllal | silt, loam, clay |
Pelal | mud | |
Psammal | sand | |
Akal | fine- to medium-sized gravel | |
Lithal | coarse gravel, stones, cobbles, boulders, bedrock | |
Phytal | algae, bryophytes, macrophytes | |
POM | particulate organic matter | |
Reproduction | Reproduction mode and the form and location of oviposit clutches | eggs laid attached to substrate |
eggs laid into the substrate | ||
eggs laid not attached to/in substrate | ||
eggs laid into open water | ||
eggs laid inside plant tissue | ||
eggs laid onto plant material | ||
eggs laid on exposed soil or rock |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilenica, M.; Mičetić Stanković, V.; Kučinić, M. Dragonfly Functional Diversity in Dinaric Karst Tufa-Depositing Lotic Habitats in a Biodiversity Hotspot. Diversity 2024, 16, 645. https://doi.org/10.3390/d16100645
Vilenica M, Mičetić Stanković V, Kučinić M. Dragonfly Functional Diversity in Dinaric Karst Tufa-Depositing Lotic Habitats in a Biodiversity Hotspot. Diversity. 2024; 16(10):645. https://doi.org/10.3390/d16100645
Chicago/Turabian StyleVilenica, Marina, Vlatka Mičetić Stanković, and Mladen Kučinić. 2024. "Dragonfly Functional Diversity in Dinaric Karst Tufa-Depositing Lotic Habitats in a Biodiversity Hotspot" Diversity 16, no. 10: 645. https://doi.org/10.3390/d16100645
APA StyleVilenica, M., Mičetić Stanković, V., & Kučinić, M. (2024). Dragonfly Functional Diversity in Dinaric Karst Tufa-Depositing Lotic Habitats in a Biodiversity Hotspot. Diversity, 16(10), 645. https://doi.org/10.3390/d16100645