Successional Changes in Vegetation Communities near Mine Pits
Abstract
:1. Introduction
- (a)
- The heterogeneity of their surfaces, which undergo significant changes due to their increased degradability;
- (b)
- Strongly pronounced unfavorable microclimatic conditions for the optimal existence of organisms; and
- (c)
- As a consequence, the low productivity of such habitats [2].
- Selecting areas of the Lopatinsky mine with different topographical characteristics to investigate the characteristics of their soils;
- Studying the physical and chemical parameters of the soil cover in the study areas; and
- Analyzing floristic species dominance and changes in plant communities of the Lopatinsky mine.
2. Materials and Methods
2.1. Study Region
2.2. Sampling
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Demutational Changes in Plant Communities
3.2. Physical and Chemical Properties of Soil from the Lopatinsky Phosphorite Mine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Talento, K.; Amado, M.; Kullberg, J.C. Quarries: From abandoned to renewed places. Land 2020, 9, 136. [Google Scholar] [CrossRef]
- Gull, A.; Ahmad Lone, A.; Ul Islam Wani, N. Biotic and abiotic stresses in plants. In Abiotic and Biotic Stress in Plants; BoD—Books on Demand: Hamburg, Germany, 2019; pp. 1–19. [Google Scholar] [CrossRef] [Green Version]
- Calzada Olvera, B. Innovation in mining: What are the challenges and opportunities along the value chain for Latin American suppliers? Miner Econ. 2022, 35, 35–51. [Google Scholar] [CrossRef]
- Qi, Z.; Han, Y.; Afrane, S.; Liu, X.; Zhang, M.; Crittenden, J.; Chen, J.L.; Mao, G. Patent mining on soil pollution remediation technology from the perspective of technological trajectory. Environ. Pollut. 2023, 316, 120661. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Huang, W.; Han, H.; Xu, C. Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards. Renew. Sust. Energ. Rev. 2021, 143, 110883. [Google Scholar] [CrossRef]
- Luo, Z.; Ma, J.; Chen, F.; Li, X.; Zhang, Q.; Yang, Y. Adaptive development of soil bacterial communities to ecological processes caused by mining activities in the Loess Plateau, China. Microorganisms 2020, 8, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, M.A.; Zedler, J.B.; Falk, D.A. Foundations of Restoration Ecology; Island Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.A.; Panagos, P.; Borrelli, P.; Jones, A.; Montanarella, L.; Tye, A.; Obst, C.G. Soil natural capital in Europe; a framework for state and change assessment. Sci. Rep. 2017, 7, 6706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickett, S.T.A.; Collins, S.L.; Armesto, J.J. A hierarchical consideration of causes and mechanisms of succession. Vegetatio 1987, 69, 109–114. [Google Scholar] [CrossRef]
- Li, J.; Nie, M.; Powell, J.R.; Bissett, A.; Pendall, E. Soil physico-chemical properties are critical for predicting carbon storage and nutrient availability across Australia. Environ. Res. Lett. 2020, 15, 094088. [Google Scholar] [CrossRef]
- González-Martínez, A.; de Simón-Martín, M.; López, R.; Táboas-Fernández, R.; Bernardo-Sánchez, A. Remediation of potential toxic elements from wastes and soils: Analysis and energy prospects. Sustainability 2019, 11, 3307. [Google Scholar] [CrossRef] [Green Version]
- Easdale, M.H.; Fariña, C.; Hara, S.; León, N.P.; Umaña, F.; Tittonell, P.; Bruzzone, O. Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring. Ecol. Indic. 2019, 107, 105545. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R. Impact of land use/cover changes on soil erosion in Western Kenya. Sustainability 2020, 12, 9740. [Google Scholar] [CrossRef]
- Szabó, J.A.; Centeri, C.; Keller, B.; Hatvani, I.G.; Szalai, Z.; Dobos, E.; Jakab, J. The use of various rainfall simulators in the determination of the driving forces of changes in sediment concentration and clay enrichment. Water 2020, 12, 2856. [Google Scholar] [CrossRef]
- Morbidelli, R.; Corradini, C.; Saltalippi, C.; Flammini, A.; Dari, J.; Govindaraju, R. Rainfall infiltration modeling: A review. Water 2018, 10, 1873. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, S.; Al-Ebraheem, A.; Holb, I.J.; Alsafadi, K.; Dikkeh, M.; Pham, Q.B.; Szabo, S. Soil management effects on soil water erosion and runoff in Central Syria— A comparative evaluation of general linear model and random forest regression. Water 2020, 12, 2529. [Google Scholar] [CrossRef]
- Bingemer, J.; Pfeiffer, M.; Hohberg, K. First 12 years of tardigrade succession in the young soils of a quickly evolving ecosystem. Zool. J. Linn. Soc. 2020, 188, 887–899. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, T.; Liu, X. Index system to evaluate the quarries ecological restoration. Sustainability 2018, 10, 619. [Google Scholar] [CrossRef] [Green Version]
- Pourbabaei, H.; Salehi, A.; Ebrahimi, S.S.; Khodaparast, F. Variations of soil physicochemical properties and vegetation cover under different altitudinal gradient, western Hyrcanean forest, north of Iran. J. For. Sci. 2020, 66, 159–169. [Google Scholar] [CrossRef]
- Kompała-Bąba, A.; Sierka, E.; Dyderski, M.K.; Bierza, W.; Magurno, F.; Besenyei, L.; Błońska, A.; Ryś, K.; Jagodziński, A.M.; Woźniak, G. Do the dominant plant species impact the substrate and vegetation composition of post-coal mining spoil heaps? Ecol. Eng. 2020, 143, 105685. [Google Scholar] [CrossRef]
- Halecki, W.; Klatka, S. Application of soil productivity index after eight years of soil reclamation with sewage sludge Amendments. Environ. Manag. 2021, 67, 822–832. [Google Scholar] [CrossRef]
- Fischer, C.; Tischer, J.; Roscher, C.; Eisenhauer, N.; Ravenek, J.; Gleixner, G.; Hildebrandt, A. Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties. Plant Soil 2014, 397, 1–16. [Google Scholar] [CrossRef]
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 2019, 27, S1–S46. [Google Scholar] [CrossRef] [Green Version]
- Grainger, M.J. An Evaluation of Coastal Dune Forest Restoration in Northern KwaZulu-Natal, South Africa. Doctoral dissertation, University of Pretoria, Pretoria, South Africa, 2011. [Google Scholar]
- Kuter, N. Reclamation of degraded landscapes due to opencast mining. In Advances in Landscape Architecture; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Kupfer, J.A. Tri-variate relationships among vegetation, soil, and topography along gradients of fluvial biogeomorphic succession. PLoS ONE 2016, 11, e0163223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biber, P.; Seifert, S.; Zaplata, M.K.; Schaaf, W.; Pretzsch, H.; Fischer, A. Relationships between a substrate, surface characteristics, and vegetation in an initial ecosystem. Biogeosciences 2013, 10, 8283–8303. [Google Scholar] [CrossRef] [Green Version]
- Beretta, A.N.; Silbermann, A.V.; Paladino, L.; Torres, D.; Bassahun, D.; Musselli, R.; García-Lamohte, A. Soil texture analyses using a hydrometer: Modification of the Bouyoucos method. Cienc. Investig. Agrar. 2014, 41, 25–26. [Google Scholar] [CrossRef] [Green Version]
- Dettori, R.; Donadio, D. Carbon dioxide, bicarbonate and carbonate ions in aqueous solutions under deep Earth conditions. Phys. Chem. Chem. Phys. 2020, 22, 10717–10725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Smith, M.J. Statistical Analysis Handbook: A Comprehensive Handbook of Statistical Concepts, Techniques and Software Tools; The Winchelsea Press, Drumlin Security Ltd.: Edinburgh, Scotland, 2018. [Google Scholar]
- Chen, F.; Yang, Y.; Mi, J.; Liu, R.; Hou, H.; Zhang, S. Effects of vegetation pattern and spontaneous succession on remediation of potential toxic metal-polluted soil in mine dumps. Sustainability 2019, 11, 397. [Google Scholar] [CrossRef] [Green Version]
- Jordano, P. What is long-distance dispersal? And a taxonomy of dispersal events. J. Ecol. 2016, 105, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Thomson, F.J.; Moles, A.T.; Auld, T.D.; Kingsford, R.T. Seed dispersal distance is more strongly correlated with plant height than with seed mass. J. Ecol. 2011, 99, 1299–1307. [Google Scholar] [CrossRef]
- Hagen, D.; Evju, M. Using short-term monitoring data to achieve goals in a large-scale restoration. Ecol. Soc. 2013, 18, 29. [Google Scholar] [CrossRef] [Green Version]
- Nguemezi, C.; Tematio, P.; Yemefack, M.; Tsozue, D.; Silatsa, T. Soil quality and soil fertility status in major soil groups at the Tombel area, South-West Cameroon. Heliyon 2020, 6, e03432. [Google Scholar] [CrossRef] [Green Version]
- Poirier, V.; Basile-Doelsch, I.; Balesdent, J.; Borschneck, D.; Whalen, J.K.; Angers, D.A. Organo-mineral interactions are more important for organic matter retention in subsoil than topsoil. Soil Syst. 2020, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, L.A.; Isbell, F.; Purves, D.W.; Loreau, M.; Hector, A. Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc. Biol. Sci. 2016, 283, 20160536. [Google Scholar] [CrossRef] [PubMed]
- Zaplata, M.K.; Dullau, S. Applying ecological succession theory to birds in solar parks: An approach to address protection and planning. Land 2022, 11, 718. [Google Scholar] [CrossRef]
- Garófano-Gómez, V.; Metz, M.; Egger, G.; Díaz-Redondo, M.; Hortobágyi, B.; Geerling, G.; Corenblit, D.; Steiger, J. Vegetation succession processes and fluvial dynamics of a mobile temperate riparian ecosystem: The lower Allier River (France). Biogéomorphologie 2017, 23, 187–202. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Kim, E.; Lee, E.; Lee, S.; Cho, K.; Lee, Y.; Chung, S.; Jeong, H.; You, Y. Characteristics of vegetation succession on the Pinus thunbergii forests in warm temperate regions, Jeju Island, South Korea. J. Ecol. Environ. 2019, 43, 44. [Google Scholar] [CrossRef] [Green Version]
- Egli, M.; Hunt, A.G.; Dahms, D.; Raab, G.; Derungs, C.; Raimondi, S.; Yu, F. Prediction of soil formation as a function of age using the percolation theory approach. Front. Environ. Sci. 2018, 6, 108. [Google Scholar] [CrossRef]
- Krüger, C.; Kohout, P.; Janoušková, M.; Püschel, D.; Frouz, J.; Rydlová, J. Plant communities rather than soil properties structure arbuscular mycorrhizal fungal communities along primary succession on a mine spoil. Front. Microbiol. 2017, 8, 719. [Google Scholar] [CrossRef] [Green Version]
- Zaplata, M.K.; Winter, S.; Fischer, A.; Kollmann, J.; Ulrich, W. Species-driven phases and increasing structure in early-successional plant communities. Am. Nat. 2013, 181, E17–E27. [Google Scholar] [CrossRef]
Plant Communities | 2005 | 2021 |
---|---|---|
No. 1 (plains) | Centaurea calcitrapa, Cirsium canum, Populus tremula, Taraxacum campylodes, Equisetum arvense, Achillea millefolium, Carex hirta, Trifolium pratense, Medicago falcata, Ostrya carpinifolia, Bryophyta | Betula pubescens, Carpinus betulus, Centaurea calcitrapa, Populus tremula, Quercus robur, Picea obovata, Fagus sylvatica, Taraxacum campylodes, Alnus glutinosa, Climacium dendroides, Lolium rigidum, Salix triandra, Campanula medium, Oryzopsis miliacea, Centaurium erythraea, Satureja montana, Psoralea bituminosa, Teucrium chamaedrys, Scrophularia canina, Artemisia absinthium, Betula pendula, Dactylis glomerata, Geranium palustre, Medicago falcata Glycyrrhiza glabra, Knautia arvensis, Swida sanguinea, Brachypodium genuense, Epilobium dodonaei, Achillea millefolium, Galium mollugo, Tragopogon pusillus, Myriolecis dispersa |
No. 2 (small enclosed depressions) | Galium mollugo, Populus tremula, Taraxacum campylodes, Equisetum arvense, Plantago lanceolata Achillea millefolium, Carex hirta, Medicago falcata, Trifolium pratense | Juniperus communis, Larix sibirica, Populus tremula, Taraxacum campylodes, Pinus sylvestris, Abies sibirica, Cirsium canum, Festuca varia, Alnus glutinosa, Lolium rigidum, Salix triandra, Dorycnium pentaphyllum, Leontodon anomalus, Oryzopsis miliacea, Reseda lutea, Teucrium chamaedrys, Scrophularia canina, Medicago sativa, Betula pendula, Dactylis glomerata, Geranium palustre, Medicago falcata, Swida sanguinea, Inula viscosa Achillea millefolium, Galium mollugo, Myriolecis dispersa |
No. 3 (gullies) | Marrubium vulgare, Phagnalon saxatile, Hyparrhenia hirta, Taraxacum campylodes, Equisetum arvense, Plantago lanceolata, Achillea millefolium, Bromus erectus | Hyparrhenia hirta, Trifolium angustifolium, Phagnalon saxatile, Frangula alnus, Matteuccia struthiopteris, Taraxacum campylodes, Cirsium canum, Geranium palustre, Festuca varia, Climacium dendroides, Lolium rigidum, Poterium polygamum Trisetum rigidum, Leontodon anomalus, Crepis tectorum Medicago Sativa, Artemisia absinthium, Betula pendula Melilotus officinalis, Dactylis glomerata, Swida sanguinea Achillea millefolium, Galium mollugo, Myriolecis dispersa |
No. 4 (arroyos) | Dittrichia viscosa, Scolymus hispanicus, Hieracium umbellatum, Cladonia fimbriata, Melilotus officinalis, Achillea millefolium, Campylium stellatum, Bromus erectus | Dittrichia viscosa, Melilotus officinalis, Phagnalon saxatile, Scolymus hispanicus, Matteuccia struthiopteris, Cladonia fimbriata, Protoparmeliopsis muralis, Geranium palustre, Tortella inclinata, Lolium rigidum, Poterium polygamum, Trisetum rigidum, Campylium stellatum, Myriolecis dispersa, Abietinella abietina, Achillea millefolium, Haematomma ochroleucum, Melilotus officinalis, Dactylis glomerata, Pimpinella tragium, Schistidium rivulare |
No. 5 (slopes) | Myriolecis dispersa, Poa pratensis, Cladonia fimbriata, Melilotus officinalis, Equisetum arvense, Campylium stellatum | Cladonia fimbriata, Hieracium umbellatum, Galium mollugo, Poa pratensis, Protoparmeliopsis muralis, Potentilla anserina, Geranium palustre, Buphthalmum salicifolium, Scutellaria galericulata, Tortella inclinata, Lolium rigidum, Schistidium rivulare, Trisetum rigidum, Campylium stellatum, Myriolecis dispersa, Abietinella abietina, Achillea millefolium, Haematomma ochroleucum, Dactylis glomerata, Santolina leucantha, Schistidium rivulare |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gura, D.; Semenycheva, I. Successional Changes in Vegetation Communities near Mine Pits. Diversity 2023, 15, 888. https://doi.org/10.3390/d15080888
Gura D, Semenycheva I. Successional Changes in Vegetation Communities near Mine Pits. Diversity. 2023; 15(8):888. https://doi.org/10.3390/d15080888
Chicago/Turabian StyleGura, Dmitry, and Irina Semenycheva. 2023. "Successional Changes in Vegetation Communities near Mine Pits" Diversity 15, no. 8: 888. https://doi.org/10.3390/d15080888
APA StyleGura, D., & Semenycheva, I. (2023). Successional Changes in Vegetation Communities near Mine Pits. Diversity, 15(8), 888. https://doi.org/10.3390/d15080888