Autochthonous Versus Allochthonous Resources in a Tropical Rocky Shore Trophic Web Adjacent to a Marine Riparian Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling
2.3. Sample Processing for Isotope Analysis
2.4. Group Assignment and Data Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anthony, K.R.N.; Fabricius, K.E. Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J. Exp. Mar. Biol. Ecol. 2000, 252, 221–253. [Google Scholar] [CrossRef]
- Boyd, C.E. Amino acid, protein, and caloric content of vascular aquatic macrophytes. Ecology 1970, 51, 902–906. Available online: https://www.jstor.org/stable/1933986 (accessed on 10 January 2023). [CrossRef]
- Platt, T.; Irwin, B. Caloric content of phytoplankton. Limnol. Oceanogr. 1973, 18, 306–310. [Google Scholar] [CrossRef]
- Bowen, S.H.; Lutz, E.V.; Ahlgren, M.O. Dietary protein and energy as determinants of food quality: Trophic strategies compared. Ecology 1995, 76, 899–907. [Google Scholar] [CrossRef]
- Ashton, E.C. Mangrove sesarmid crab feeding experiments in Peninsular Malaysia. J. Exp. Mar. Biol. Ecol. 2002, 273, 97–119. [Google Scholar] [CrossRef]
- Peterjohn, W.T.; Correll, D.L. Nutrient Dynamics in an Agricultural Watershed: Observations on the Role of a Riparian Forest. Ecology 1984, 65, 1466–1475. [Google Scholar] [CrossRef]
- Pusey, B.J.; Arthington, A.H. Importance of the riparian zone to the conservation and management of freshwater fish: A review. Mar. Freshw. Res. 2003, 54, 1–16. [Google Scholar] [CrossRef]
- Sandin, L.; Solimini, A.G. Freshwater ecosystem structure–function relationships: From theory to application. Freshw. Biol. 2009, 54, 2017–2024. [Google Scholar] [CrossRef]
- Neres-Lima, V.; Machado-Silva, F.; Baptista, D.F.; Oliveira, R.B.S.; Andrade, P.M.; Oliveira, A.F.; Sasada-Sato, C.Y.; Silva-Junior, E.F.; Feijó-Lima, R.; Angelini, R.; et al. Allochthonous and autochthonous carbon flows to secondary production in tropical forested streams. Freshw. Biol. 2017, 62, 1012–1023. [Google Scholar] [CrossRef]
- Tromboni, F.; Lourenço-Amorim, C.; Neres-Lima, V.; Thomas, S.A.; Silva-Araújo, M.; Feijó-Lima, R.; Silva-Júnior, E.F.; Healtherly, T., II; Moulton, T.P.; Zandonà, E. Conversion of tropical forests to agriculture alters the accrual, stoichiometry, nutrient limitation, and taxonomic composition of stream periphyton. J. Int. Rev. Hydrobiol. 2019, 104, 116–126. [Google Scholar] [CrossRef]
- Brennan, J.S.; Culverwell, H. Marine Riparian: An Assessment of Riparian Functions in Marine Ecosystems, 1st ed.; Washington Sea Grant Program: Seattle, WA, USA, 2005. [Google Scholar]
- Brennan, J.S. Marine Riparian Vegetation Communities of Puget Sound (No. TR-2007-02); Seattle District, U.S. Army Corps of Engineers: Seattle, WA, USA, 2007.
- Helfield, J.M.; Naiman, R.J. Keystone interactions: Salmon and bear in riparian forests of Alaska. Ecosystems 2006, 9, 167–180. [Google Scholar] [CrossRef]
- Bruno, D.O.; Riccialdelli, L.; Botto, F.; Acha, E.M. Organic matter sources for fish larvae and juveniles in a marine-estuarine interface (Mar Chiquita lagoon, Argentina). Environ. Biol. Fishes 2017, 100, 1609–1622. [Google Scholar] [CrossRef]
- Buelow, C.; Sheaves, M. A birds-eye view of biological connectivity in mangrove systems. Estuar. Coast. Shelf Sci. 2015, 152, 33–43. [Google Scholar] [CrossRef]
- Taylor, M.D.; Gaston, T.F.; Raoult, V. The economic value of fisheries harvest supported by saltmarsh and mangrove productivity in two Australian estuaries. Ecol. Indic. 2018, 84, 701–709. [Google Scholar] [CrossRef]
- Riis, T.; Kelly-Quinn, M.; Aguiar, F.C.; Manolaki, P.; Bruno, D.; Bejarano, M.D.; Clerici, N.; Fernandes, M.R.; Franco, J.C.; Pettit, N.; et al. Global overview of ecosystem services provided by riparian vegetation. Bioscience 2020, 70, 501–514. [Google Scholar] [CrossRef]
- Oliveira, A.E.S.; Kurtz, B.C.; Creed, J.C. Fitossociologia e produção de serrapilheira em um trecho de Mata Atlântica, no Município de Angra dos Reis, RJ. BioFarm 2008, 2, 1–19. [Google Scholar]
- Colombini, I.; Chelazzi, L.; Gibson, R.N.; Atkinson, R.J.A. Influence of marine allochthonous input on sandy beach communities. Oceanogr. Mar. Biol. Annu. Rev. 2003, 41, 115–159. [Google Scholar]
- Garcia, A.M.; Oliveira, M.C.L.M.; Odebrecht, C.; Colling, J.L.A.; Vieira, J.P.; Rodrigues, F.L.; Bastos, R.F. Allochthonous versus atochthonous organic matter sustaining macroconsumers in a subtropical sandy beach revealed by stable isotopes. Mar. Biol. Res. 2019, 15, 241–258. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Martensen, A.C.; Metzger, J.P.; Tabarelli, M.; Scarano, F.; Fortin, M.J. The Brazilian Atlantic Forest: A shrinking biodiversity hotspot. In Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 405–425. [Google Scholar]
- Creed, J.C.; Pires, D.O.; Figueiredo, M.D.O. Biodiversidade Marinha da Baía da Ilha Grande, 1st ed.; Ministério do Meio Ambiente—MMA: Brasilia, Brazil, 2007; pp. 43–54.
- Mahiques, M.M.; Furtado, V.V. Utilização da análise dos componentes principais na caracterização dos sedimentos de superfície de fundo da baia da ilha grande (rj). Bol. Inst. Oceanogr. 1989, 37, 1–19. [Google Scholar] [CrossRef]
- INEA. Superintendência Regional Baía da Ilha Grande (Supbig). 2020. Available online: http://www.inea.rj.gov.br/Portal/MegaDropDown/Regionais/BaiadaIlhaGrande/index.htm&lang=PT-BR#/UnidadesdeConservacao (accessed on 10 March 2023).
- Carlos-Júnior, L.A.; Spencer, M.; Neves, D.M.; Moulton, T.P.; Pires, D.D.O.; Castro, C.B.; Ventura, C.R.R.; Ferreira, C.E.L.; Serejo, C.S.; Oigman-Pszczol, S.; et al. Rarity and beta diversity assessment as tools for guiding conservation strategies in marine tropical subtidal communities. Divers. Distrib. 2019, 25, 743–757. [Google Scholar] [CrossRef]
- McIntyre, A.D.; Eleftheriou, A. Methods for the Study of Marine Benthos, 1st ed.; Blackwell Science: Oxford, UK, 2005; pp. 1–42. [Google Scholar]
- Cerling, T.E.; Ayliffe, L.K.; Dearing, M.D.; Ehleringer, J.R.; Passey, B.H.; Podlesak, D.W.; Torregrossa, A.; West, A.G. Determining biological tissue turnover using stable isotopes: The reaction progress variable. Oecologia 2007, 151, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Cabanellas-Reboredo, M.; Deudero, S.; Blanco, A. Stable-isotope signatures (δ13C and δ15N) of different tissues of Pinna nobilis Linnaeus, 1758 (Bivalvia): Isotopic variations among tissues and between seasons. J. Molluscan Stud. 2009, 75, 343–349. [Google Scholar] [CrossRef]
- Pires-Teixeira, L.M.; Neres-Lima, V.; Creed, J.C. Is acidification of samples for isotopic analysis of carbon and nitrogen necessary for shoreline marine species? Mar. Freshw. Res. 2020, 72, 256–262. [Google Scholar] [CrossRef]
- Fry, B. Stable Isotope Ecology, 1st ed.; Springer: New York, NY, USA, 2006; pp. 40–75. [Google Scholar]
- Boecklen, W.J.; Yarnes, C.T.; Cook, B.A.; James, A.C. On the use of stable isotopes in trophic ecology. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 411–440. [Google Scholar] [CrossRef]
- McCormack, S.A.; Trebilco, R.; Melbourne-Thomas, J.; Blanchard, J.L.; Fulton, E.A.; Constable, A. Using stable isotope data to advance marine food web modelling. Rev. Fish Biol. Fish. 2019, 29, 277–296. [Google Scholar] [CrossRef]
- Parnell, A. Simmr: A Stable Isotope Mixing Model; R Package Version 0.4.1; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://CRAN.R-project.org/package=simmr (accessed on 6 March 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 6 March 2023).
- McCutchan, J.H., Jr.; Lewis, W.M., Jr.; Kendall, C.; McGrath, C.C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 2003, 102, 378–390. [Google Scholar] [CrossRef]
- Phillips, D.L.; Koch, P.L. Incorporating concentration dependence in stable isotope mixing models. Oecologia 2002, 130, 114–125. [Google Scholar] [CrossRef]
- Leys, S.P.; Eerkes-Medrano, D.I. Feeding in a calcareous sponge: Particle uptake by pseudopodia. Biol. Bull. 2006, 211, 157–171. [Google Scholar] [CrossRef]
- Wanick, R.C.; Vieira, R.P.; Santelli, R.E.; Paranhos, R.P.D.R.; Coutinho, C.C. Screening for cultivable species of marine sponges (porifera) in an ecologically inspired ex situ system. J. Fish. Sci. 2015, 9, 5. [Google Scholar]
- Dharan, D.T.; Prasad, G. Food and feeding of Phallusia nigra, Savigny, 1816. Int. J. Zool. Stud. 2018, 3, 261–264. [Google Scholar]
- Hendler, G. The feeding biology of Ophioderma brevispinum (Ophiuroidea: Echinodermata). In Echinoderms: Proceedings of the International Echinoderm Conference, Tampa, FL, USA, 17 September 1982; Balkema: Rotterdam, The Netherland, 1982; pp. 21–27. [Google Scholar]
- Mantelatto, M.C.; Vidon, L.F.; Silveira, R.B.; Menegola, C.; Da Rocha, R.M.; Creed, J.C.; Mantelatto, M.C.; Vidon, L.F.; Silveira, R.B.; Menegola, C.; et al. Host species of the non-indigenous brittle star Ophiothela mirabilis (Echinodermata: Ophiuroidea): An invasive generalist in Brazil? Mar. Biodivers. Rec. 2016, 9, 8. [Google Scholar] [CrossRef]
- Turon, X.; Codina, M.; Tarjuelo, I.; Uriz, M.J.; Becerro, M.A. Mass recruitment of Ophiothrix fragilis (Ophiuroidea) on sponges: Settlement patterns and post-settlement dynamics. Mar. Ecol. Prog. Ser. 2000, 200, 201–212. [Google Scholar] [CrossRef]
- Santana, E.F.C.; Alves, A.L.; Santos, A.D.M.; Maria Da Gloria, G.S.; Perez, C.D.; Gomes, P.B. Trophic ecology of the zoanthid Palythoa caribaeorum (Cnidaria: Anthozoa) on tropical reefs. J. Mar. Biol. Assoc. UK 2015, 95, 301–309. [Google Scholar] [CrossRef]
- Sloan, N.A.; Von Bodungen, B. Distribution and feeding of the sea cucumber Isostichopus badionotus in relation to shelter and sediment criteria of the Bermuda platform. Mar. Ecol. Prog. Ser. 1980, 2, 257–264. [Google Scholar] [CrossRef]
- Calderon, E.N.; Zilberberg, C.; Pavia, P.C. The possible role of Echinometra lucunter (Echinodermata: Echinoidea) in the local distribution of Darwinella sp. (Porifera: Dendroceratida) in Arraial do Cabo, Rio de Janeiro State, Brazil. Porifera Res. Biodivers. Innov. Sustain. 2007, 28, 211–217. [Google Scholar]
- Granado, I.; Caballero, P. Feeding rates of Littorina striata and Osilinus atratus in relation to nutritional quality and chemical defenses in seaweeds. Mar. Biol. 2001, 138, 1213. [Google Scholar] [CrossRef]
- Moraes, F.; Chagas-Júnior, A. Border between two worlds: The first record of sea anemone feeding on centipede. Int. J. Myriap. 2009, 2, 215. [Google Scholar] [CrossRef]
- Del Valle, J.C.; Acuña, F.H.; Mañanes, A.A.L. Digestive flexibility in response to environmental salinity and temperature in the non-symbiotic sea anemone Bunodosoma zamponii. Hydrobiologia 2015, 759, 189–199. [Google Scholar] [CrossRef]
- Tewes, R.P. The Ecology and Feeding Biology of Ophioderma cinereum in a Mangrove Environment. Ph.D. Thesis, Department of Biology, University of Missouri-Kansas City, Kansas, MO, USA, 1984. [Google Scholar]
- Dubiaski-Silva, J.; Masunari, S. Natural diet of fish and crabs associated with the phytal community of Sargassum cymosum C. Agardh, 1820 (Phaeophyta, Fucales) at Ponta das Garoupas, Bombinhas, Santa Catarina State, Brazil. J. Nat. Hist. 2008, 42, 1907–1922. [Google Scholar] [CrossRef]
- Phillips, D.L.; Newsome, S.D.; Gregg, J.W. Combining sources in stable isotope mixing models: Alternative methods. Oecologia 2005, 144, 520–527. [Google Scholar] [CrossRef]
- Santos, E.P.; Condini, M.V.; Santos, A.C.A.; Alvarez, H.M.; de Moraes, L.E.; Garcia, A.F.S.; Garcia, A.M. Spatio-temporal changes in basal food source assimilation by fish assemblages in a large tropical bay in the SW Atlantic Ocean. Estuaries Coasts 2020, 43, 894–908. [Google Scholar] [CrossRef]
- Loneragan, N.R.; Bunn, S.E.; Kellaway, D.M. Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable-isotope study. Mar. Biol. 1997, 130, 289–300. [Google Scholar] [CrossRef]
- Corbisier, T.N.; Soares, L.S.H.; Petti, M.A.V.; Muto, E.Y.; Silva, M.H.C.; McClelland, J.; Valiela, I.J.A.E. Use of isotopic signatures to assess the food web in a tropical shallow marine ecosystem of Southeastern Brazil. Aquat. Ecol. 2006, 40, 381–390. [Google Scholar] [CrossRef]
- Brito, E.F.; Moulton, T.P.; De Souza, M.L.; Bunn, S.E. Stable isotope analysis indicates microalgae as the predominant food source of fauna in a coastal forest stream, south-east Brazil. Austral Ecol. 2006, 31, 623–633. [Google Scholar] [CrossRef]
- Neres-Lima, V.; Brito, E.F.; Krsulović, F.A.M.; Detweiler, A.M.; Hershey, A.E.; Moulton, T.P. High importance of autochthonous basal food source for the food web of a Brazilian tropical stream regardless of shading. Int. Rev. Hydrobiol. 2016, 101, 132–142. [Google Scholar] [CrossRef]
- Machado-Silva, F.; Neres-Lima, V.; Oliveira, A.F.; Moulton, T.P. Forest cover controls the nitrogen and carbon stable isotopes of rivers. Sci. Total. Environ. 2022, 817, 152784. [Google Scholar] [CrossRef]
- Herman, P.M.; Middelburg, J.J.; Widdows, J.; Lucas, C.H.; Heip, C.H. Stable isotopes as trophic tracers: Combining field sampling and manipulative labelling of food resources for macrobenthos. Mar. Ecol. Prog. Ser. 2000, 204, 79–92. [Google Scholar] [CrossRef]
- Salen-Picard, C.; Arlhac, D. Long-term changes in a Mediterranean benthic community: Relationships between the polychaete assemblages and hydrological variations of the Rhône river. Estuaries 2002, 25, 1121–1130. [Google Scholar] [CrossRef]
- Salen-Picard, C.; Darnaude, A.M.; Arlhac, D.; Harmelin-Vivien, M.L. Fluctuations of macrobenthic populations: A link between climate-driven river run-off and sole fishery yields in the Gulf of Lions. Oecologia 2002, 133, 380–388. [Google Scholar] [CrossRef]
- Duggins, D.O.; Simenstad, C.A.; Estes, J.A. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 1989, 245, 170–173. [Google Scholar] [CrossRef]
- Fredriksen, S. Food web studies in a Norwegian kelp forest based on stable isotope (δ13C and δ15N) analysis. Mar. Ecol. Prog. Ser. 2003, 260, 71–81. [Google Scholar] [CrossRef]
- Mann, K.H. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol. Oceanogr. 1988, 33, 910–930. [Google Scholar] [CrossRef]
- Lima, E.J.B.; Gomes, P.B.; Souza, J.R.B. Reproductive biology of Echinometra lucunter (Echinodermata: Echinoidea) in a northeast Brazilian sandstone reef. An. Acad. Bras. Cienc. 2009, 81, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Schoppe, S.; Werding, B. The boreholes of the sea urchin genus Echinometra (Echinodermata: Echinoidea: Echinometridae) as a microhabitat in tropical South America. Mar. Ecol. 1996, 17, 181–186. [Google Scholar] [CrossRef]
- Asgaard, U.; Bromley, R.G. Echinometrid sea urchins, their trophic styles and corresponding bioerosion. In Current Developments in Bioerosion; Springer: Berlin/Heidelberg, Germany, 2008; pp. 279–303. [Google Scholar]
- Reyes-Luján, J.; Barrios, J.; Arrieche, D.; Zapata-Vívenes, E.; Salgado, W.; Lodeiros, C. Dieta del erizo negro Echinometra lucunter (Echinometra: Echinoidea) en el Nororiente de Venezuela. Rev. Biol. Trop. 2015, 63, 233–242. [Google Scholar]
- Barnes, R.S.K.; Hughes, R.N. An Introduction to Marine Ecology, 3rd ed.; John Wiley & Sons: Oxford, UK, 1999; pp. 222–237. [Google Scholar]
- Mahiques, M.M.; Tessler, M.G.; Furtado, V.V. Characterization of energy gradient in enclosed bays of Ubatuba region, south-eastern Brazil. Estuar. Coast. Shelf Sci. 1998, 47, 431–446. [Google Scholar] [CrossRef]
- Oliveira, A.E.S.; Creed, J.C. Mollusca, Bivalvia, Isognomon bicolor (CB Adams 1845): Distribution extension. Check List 2008, 4, 386–388. [Google Scholar] [CrossRef]
- Bernini, E.; Rezende, C.E. Litterfall in a mangrove in Southeast Brazil. Pan-Am. J. Aquat. Sci. 2010, 5, 508–519. [Google Scholar]
- França, J.S.; Gregório, R.S.; de Paula, J.D.A.; Júnior, J.F.G.; Ferreira, F.A.; Callisto, M. Composition and dynamics of allochthonous organic matter inputs and benthic stock in a Brazilian stream. Mar. Freshw. Res. 2009, 60, 990–998. [Google Scholar] [CrossRef]
- McQuaid, C.D. Biology of the gastropod family Littorinidae. II. Role in the ecology of intertidal and shallow marine ecosystems. Oceanogr. Mar. Biol. 1996, 34, 263–302. [Google Scholar]
- Norton, T.A.; Hawkins, S.J.; Manley, N.L.; Williams, G.A.; Watson, D.C. Scraping a living: A review of littorinid grazing. Hydrobiologia 1990, 193, 117–138. [Google Scholar] [CrossRef]
- Gili, J.M.; Coma, R. Benthic suspension feeders: Their paramount role in littoral marine food webs. Trends Ecol. Evol. 1998, 13, 316–321. [Google Scholar] [CrossRef]
- Figueiredo, M.O.; Tâmega, F.T.S. Macroalgas marinhas. In Biodiversidade Marinha da Baía da Ilha Grande, 1st ed.; Creed, J.C., Pires, D.O., Figueiredo, M.D.O., Eds.; Ministério do Meio Ambiente—MMA: Brasília, Brazil, 2007; pp. 152–180. [Google Scholar]
- Mantelatto, M.C.; Carlos-Júnior, L.A.; Côrrêa, C.; Cardoso, C.F.d.L.; Creed, J.C. Depth-related drivers of benthic community structure on shallow subtidal rocky reefs. Estuar. Coast. Shelf Sci. 2022, 266, 107743. [Google Scholar] [CrossRef]
- Connell, S.; Foster; Airoldi, L. What are algal turfs? Towards a better description of turfs. Mar. Ecol. Prog. Ser. 2014, 495, 299–307. [Google Scholar] [CrossRef]
- Klumpp, D.W.; McKinnon, A.D. Community structure, biomass and productivity of epilithic algal communities on the Great Barrier Reef: Dynamics at different spatial scales. Mar. Ecol. Prog. Ser. 1992, 86, 77–89. [Google Scholar] [CrossRef]
- Tebbett, S.B.; Bellwood, D.R. Sediments ratchet-down coral reef algal turf productivity. Sci. Total Environ. 2020, 713, 136709. [Google Scholar] [CrossRef]
- Lages, B.G.; Fleury, B.G.; Menegola, C.; Creed, J.C. Change in tropical rocky shore communities due to an alien coral invasion. Mar. Ecol. Prog. Ser. 2011, 438, 85–96. [Google Scholar] [CrossRef]
- Mantelatto, M.C.; Fleury, B.G.; Menegola, C.; Creed, J.C. Cost–benefit of different methods for monitoring invasive corals on tropical rocky reefs in the southwest Atlantic. J. Exp. Mar. Biol. Ecol. 2013, 449, 129–134. [Google Scholar] [CrossRef]
- Loma, T.L.; Conand, C.; Harmelin-Vivien, M.; Ballesteros, E. Food selectivity of Tripneustes gratilla (L.) (Echinodermata: Echinoidea) in oligotrophic and nutrient-enriched coral reefs at La Reunion (Indian Ocean). Bull. Mar. Sci. 2002, 70, 927–938. [Google Scholar]
- Stachowicz, J.J.; Hay, M.E. Facultative mutualism between an herbivorous crab and a coralline alga: Advantages of eating noxious seaweeds. Oecologia 1996, 105, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Pueschel, C.M.; Judson, B.L.; Wegeberg, S. Decalcification during epithallial cell turnover in Jania adhaerens (Corallinales, Rhodophyta). Phycologia 2005, 44, 156–162. [Google Scholar] [CrossRef]
- Westerhausen, L.; Poynter, J.; Eglinton, G.; Erlenkeuser, H.; Sarnthein, M. Marine and terrigenous origin of organic matter in modern sediments of the equatorial East Atlantic: The σ13C and molecular record. Deep. Sea Res. Part I Oceanogr. Res. Pap. 1993, 40, 1087–1121. [Google Scholar] [CrossRef]
- Peterson, B.J.; Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 1987, 18, 293–320. [Google Scholar] [CrossRef]
- Mantelatto, M.C.; Oliveira, A.E.S.; Menegola, C.; Casares, F.A.; Creed, J.C. Depth and grazing intensity are the main drivers of subtidal hardground benthic community structure on tropical south Atlantic reefs. Mar. Ecol. 2020, 00, e12586. [Google Scholar] [CrossRef]
- Muscatine, L.; McCloskey, L.R.; Marian, R.E. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 1981, 26, 601–661. [Google Scholar] [CrossRef]
- Tanner, J.E. Consequences of density-dependent heterotrophic feeding for a partial autotroph. Mar. Ecol. Prog. Ser. 2002, 227, 293–304. [Google Scholar] [CrossRef]
- Sebens, K.P. Autotrophic and heterotrophic nutrition of coral reef zoanthids. In Proceedings of the 3rd International Coral Reef Symposium, Miami, FL, USA, 3 May 1977; Volume 1, pp. 397–404. [Google Scholar]
- Matsuura, Y.; Wada, E. Carbon and nitrogen stable isotope ratios in marine organic matters of the coastal ecosystem in Ubatuba, southern Brazil. Cienc. Cult. 1994, 46, 141–146. [Google Scholar]
- Stoner, A.W.; Zimmerman, R.J. Food pathways associated with penaeid shrimps in a mangrove-fringed estuary. Fish. Bull. 1988, 86, 543–552. [Google Scholar]
- Marguillier, S.; Van der Velde, G.; Dehairs, F.; Hemminga, M.A.; Rajagopal, S. Trophic relationships in an interlinked mangrove-seagrass ecosystem as traced by delta13C and delta15N. Mar. Ecol. Prog. Ser. 1997, 151, 115–121. [Google Scholar] [CrossRef]
- Claudino, M.C.; Pessanha, A.L.M.; Araújo, F.G.; Garcia, A.M. Trophic connectivity and basal food sources sustaining tropical aquatic consumers along a mangrove to ocean gradient. Estuar. Coast. Shelf Sci. 2015, 167, 45–55. [Google Scholar] [CrossRef]
- Bouillon, S.; Connolly, R.M. Carbon exchange among tropical coastal ecosystems. In Ecological Connectivity among Tropical Coastal Ecosystems, 1st ed.; Springer: Dordrecht, Belgium, 2009; pp. 45–70. [Google Scholar]
- Deegan, L.A.; Garritt, R.H. Evidence for spatial variability in estuarine food webs. Mar. Ecol. Prog. Ser. 1997, 147, 31–47. [Google Scholar] [CrossRef]
- Alfaro, A.C.; Thomas, F.; Sergent, L.; Duxbury, M. Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Estuar. Coast. Shelf Sci. 2006, 70, 271–286. [Google Scholar] [CrossRef]
Taxonomic Group/Species | Comments about Food/Feeding | Resource Potentially Consumed |
---|---|---|
Suspension Feeders: Porifera: Desmapsamma anchorata (Carter, 1882) Amphimedon viridis Duchassaing & Michelotti, 1864 Mycale (Zygomycale) angulosa (Duchassaing & Michelotti, 1864) | Occurs via collared cells (choanocytes), which use flagella to move the water to the cell surface, efficiently retaining particles such as phytoplankton, bacterioplankton, heterotrophic eukaryotes, debris and dissolved materials [37,38]. | Phytoplankton, zooplankton, particulate MRV, particulate algae, and particulate calcareous algae J. adhaerens |
Cnidaria: Tubastraea coccinea Lesson, 1830 Tubastraea tagusensis Wells, 1982 | Little data available. | |
Chordata: Phallusia nigra Savigny, 1816 | Feeds on suspended material including phytoplankton, zooplankton; able to filter up to 173 L of water through the body in 24 h [39]. | |
Echinodermata: Ophiothela mirabilis Verrill, 1867 | Have the most diverse feeding strategies and may be opportunistic omnivores, suspension feeders, detritivores, deposit feeders or scavengers [40]. Uses a range of benthic invertebrates as hosts, so can keep off the bottom substrate [41]; these relationships suggest it is a suspension feeder [42]. | |
Mixotrophs: Cnidaria: Palythoa caribaeorum Duchassaing & Michelotti, 1860 | Has both autotrophic and heterotrophic feeding, hosting zooxanthellae, symbiotic dinoflagellates, in its gastrodermal tissues that provide nutrition through photosynthetic products; it is also a suspension feeder on phytoplankton, zooplankton and particulate organic material, although the contributions of each resource are unknown [43]. | Phytoplankton, zooplankton, particulate MRV, particulate algae, and particulate calcareous algae J. adhaerens. |
Deposit Feeders: Echinodermata: Isostichopus badionotus (Selenka, 1867) Holothuria (Halodeima) grisea Selenka, 1867 | Feed on fragmented particulate organic matter from the substratum. These holothurians are known to move sediment and feed on microorganisms associated with organic and inorganic material [44]. | Sedimentary organic matter, particulate MRV, particulate algae, and particulate calcareous algae J. adhaerens. |
Herbivores: Echinodermata: Echinometra lucunter (Linnaeus, 1758) Paracentrotus gaimardi (Blainville, 1825) Lytechinus variegatus (Lamarck, 1816) | Sea urchins are herbivores well known to control algae populations [45]. | MRV, macroalgae and calcareous algae J. adhaerens. |
Mollusca: Littorina Férussac, 1822 | Herbivorous snails [46]. | |
Omnivore Group I: Cnidaria: Bunodosoma caissarum Corrêa in Belém, 1987 | A sea anemone which is a suspension feeder that feeds on particulate organic matter as well as live prey capture by tentacles, which react quickly using physical and chemical reactions to entrap [47,48] | Plankton, algae, calcareous algae J. adhaerens, MRV, gastropod Littorina sp. and the crab M. hispidus. |
Omnivore Group II: Echinodermata: Ophioderma cinereum Müller & Troschel, 1842 | O. cinereum is an omnivorous opportunist that scavenges on carrion, preys on organisms slow enough and small enough to capture, as well as browses on plant debris [40,49]. | Algae, calcareous algae J. adhaerens, MRV, gastropod Littorina sp. |
Arthropoda: Mithrax hispidus (Herbst, 1790 [in Herbst, 1782–1790]) | This crab has an omnivorous diet consisting mainly of algae consumed directly on the substrate, as well as small gastropods, crustaceans, amphipods [50]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires-Teixeira, L.M.; Neres-Lima, V.; Creed, J.C. Autochthonous Versus Allochthonous Resources in a Tropical Rocky Shore Trophic Web Adjacent to a Marine Riparian Area. Diversity 2023, 15, 725. https://doi.org/10.3390/d15060725
Pires-Teixeira LM, Neres-Lima V, Creed JC. Autochthonous Versus Allochthonous Resources in a Tropical Rocky Shore Trophic Web Adjacent to a Marine Riparian Area. Diversity. 2023; 15(6):725. https://doi.org/10.3390/d15060725
Chicago/Turabian StylePires-Teixeira, Larissa M., Vinicius Neres-Lima, and Joel C. Creed. 2023. "Autochthonous Versus Allochthonous Resources in a Tropical Rocky Shore Trophic Web Adjacent to a Marine Riparian Area" Diversity 15, no. 6: 725. https://doi.org/10.3390/d15060725
APA StylePires-Teixeira, L. M., Neres-Lima, V., & Creed, J. C. (2023). Autochthonous Versus Allochthonous Resources in a Tropical Rocky Shore Trophic Web Adjacent to a Marine Riparian Area. Diversity, 15(6), 725. https://doi.org/10.3390/d15060725