Ecology and Diversity of Angiosperm Parasites and Their Host Plants along Elevation Gradient in Al-Baha Region, Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey
2.3. Plant Collection and Species Identification
2.4. Floristic Analysis
2.5. Data Analysis
3. Results
3.1. Floristic Composition of Parasitic Species
3.2. Chorological Analysis of Parasitic Plants
3.3. Diversity of Parasitic Species
3.4. Floristic Composition of Host Species
3.5. Chorological Analysis of Host Plants
3.6. Diversity of Host Species
4. Discussion
5. Study Limitations
6. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Family/Parasite | Spatial Distribution | Kind of Parasite | Origin | Habit | Life Span | Chorotype | Dispersal Type | Infested Plant Organ | Host | INFC (%) |
---|---|---|---|---|---|---|---|---|---|---|
Convolvulaceae | ||||||||||
Cuscuta campestris Yunck. | 1.2.3.4 | Holop. | EXO | Herb | Ann. | AM | ZO + HY | Stem | Nicotiana glauca Graham | 2 |
Pluchea dioscoridis (L.) DC. | 28 | |||||||||
Pulicaria undulata (L.) C.A.Mey. | 70 | |||||||||
Loranthaceae | ||||||||||
Loranthella deflersii (Tiegh.) S.Blanco & C.E.Wetzel | 3.4 | Hmip. | IND | Shrub | Per. | SA-AR + SU-ZA | ZO | Stem | Searsia retinorrhoea (Steud. ex Oliv.) Moffett | 8.7 |
Tamarix senegalensis DC. | 21.7 | |||||||||
Vachellia tortilis subsp. tortilis | 69.6 | |||||||||
Phragmanthera austroarabica A.G.Mill. & J.A.Nyberg | 1.2.3.4 | Hmip. | IND | Shrub | Per. | SA-AR | ZO | Stem | Barbeya oleoides Schweinf. | 2.6 |
Buddleja polystachya Fresen. | 0.17 | |||||||||
Calotropis procera (Aiton) W.T.Aiton | 0.17 | |||||||||
Ficus carica L. | 3.8 | |||||||||
Ficus Palmata Forssk. | 0.17 | |||||||||
Olea europaea subsp. cuspidata (Wall. & G.Don) Cif. | 3.1 | |||||||||
Pistacia falcata Becc. ex Martelli. | 0.51 | |||||||||
Tamarix aphylla (L.) H.Karst. | 2.6 | |||||||||
Vachellia flava (Forssk.) Kyal. & Boatwr. | 11.5 | |||||||||
Vachellia gerrardii (Benth.) P.J.H.Hurter | 33.7 | |||||||||
Vachellia origena (Hunde) Kyal. & Boatwr. | 27.6 | |||||||||
Vachellia tortilis subsp. raddiana (Savi) Kyal. & Boatwr. | 10.6 | |||||||||
Ziziphus spina-christi (L.) Willd. | 3.6 | |||||||||
Plicosepalus acaciae (Zucc.) Wiens & Polhill | 1.2.3.4 | Hmip. | IND | Shrub | Per. | SU-ZA | ZO | Stem | Senegalia asak (Forssk.) Kyal. & Boatwr. | 58.1 |
Tamarix aphylla (L.) H.Karst. | 9.7 | |||||||||
Vachellia tortilis subsp. raddiana (Savi) Kyal. & Boatwr. | 32.3 | |||||||||
Plicosepalus curviflorus Tiegh. | 1.2.3.4 | Hmip. | IND | Shrub | Per. | SA-AR + SU-ZA | ZO | Stem | Senegalia asak (Forssk.) Kyal. & Boatwr. | 21.4 |
Tamarix aphylla (L.) H.Karst. | 5.2 | |||||||||
Vachellia etbaica (Schweinf.) Kyal. & Boatwr. | 31.8 | |||||||||
Vachellia gerrardii (Benth.) P.J.H.Hurter | 26.6 | |||||||||
Vachellia tortilis subsp. raddiana (Savi) Kyal. & Boatwr. | 15.1 | |||||||||
Orobanchaceae | ||||||||||
Orobanche mutelii F.W.Schultz | 1.2.3.4 | Holop. | IND EXO | Herb Herb | Ann. Ann. | SA-AR + IR-TR Med + IR-TR | AN AN | Root | Bidens biternata (Lour.) Merr. & Sherff | 22.1 |
Rumex nervosus Vahl | 77.9 | |||||||||
Orobanche cernua Loefl. | 3.4 | Holop. | IND | Herb | Ann. | SA-AR + IR-TR | AN | Root | Rumex nervosus Vahl | 100 |
Santalaceae | ||||||||||
Viscum schimperi Engl. | 1.2.3.4 | Hmip. | IND | Shrub | Per. | SA-AR + SU-ZA | ZO | Stem | Tamarix aphylla (L.) H.Karst. | 7.1 |
Ziziphus spina-christi (L.) Willd. | 92.9 |
Family/Host | Spatial Distribution | Life Form | Life Span | Origin | Chorotype | Parasitic Species | Infestation (%) |
---|---|---|---|---|---|---|---|
Asteraceae | |||||||
Bidens biternata (Lour.) Merr. & Sherff | 1.2.3.4 | TH | Ann. | IND | NEO | Orobanche mutelii F.W.Schultz | 2 |
Pluchea dioscoridis (L.) DC. | 1.2.3.4 | TH | Per. | IND | SA-AR + SU-ZA | Cuscuta campestris Yunck | 11.3 |
Pulicaria undulata (L.) C.A.Mey. | 1.2.3.4 | HE | Per. | IND | SA-AR + SU-ZA | Cuscuta campestris Yunck | 6.3 |
Anacardiaceae | |||||||
Pistacia falcata Becc. ex Martelli. | 1.2.3.4 | PH | Per. | IND | SA-AR + SU-ZA | Phragmanthera austroarabica A.G.Mill. & J.A.Nyberg | 2.4 |
Searsia retinorrhoea (Steud. ex Oliv.) Moffett | 1.2.3.4 | PH | Per. | IND | SA-AR + SU-ZA | Loranthella deflersii (Tiegh.) S.Blanco & C.E.Wetzel | 3.3 |
Apocynaceae | |||||||
Calotropis procera (Aiton) W.T.Aiton | 1.2.3.4 | PH | Per. | IND | SA-AR + SU-ZA | Phragmanthera austroarabica A.G.Mill. & J.A.Nyberg | 0.6 |
Barbeyaceae | |||||||
Barbeya oleoides Schweinf. | 3,4 | PH | Per. | IND | SA-AR + SU-ZA | Phragmanthera austroarabica A.G.Mill. & J.A.Nyberg | 2.2 |
Fabaceae | |||||||
Senegalia asak (Forssk.) Kyal. & Boatwr. | 1.2.3.4 | PH | Per. | IND | SA-AR + SU-ZA | Plicosepalus acaciae (Zucc.) Wiens & Polhill Plicosepalus curviflorus Tiegh. | 2 3.4 |
Vachellia etbaica (Schweinf.) Kyal. & Boatwr. | 1.2.3.4 | PH | Per. | IND | SA-AR + SU-ZA | Plicosepalus curviflorus Tiegh. | 8.2 |
Vachellia flava (Forssk.) Kyal. & Boatwr. | 1.2.3.4 | PH | Per. | IND | SA-AR + SU-ZA | Phragmanthera austroarabica A.G.Mill. & J.A.Nyberg | 47.5 |
Vachellia gerrardii (Benth.) P.J.H.Hurter | 1.2.3.4 | PH | Per. | IND | SA-AR + SU-ZA | Phragmanthera austroarabica A.G.Mill. & J.A.Nyberg Plicosepalus curviflorus Tiegh. | 19.8 5.8 |
Vachellia origena (Hunde) Kyal. & Boatwr. | 3,4 | PH | Per. | EXO | SA-AR + SU-ZA | Phragmanthera austroarabica A.G.Mill. & J.A.Nyberg | 16 |
Vachellia tortilis subsp. raddiana (Savi) Kyal. & Boatwr. | 1.2.3.4 | PH | Per. | IND | SA-AR + SU-ZA | Phragmanthera austroarabica A.G.Mill. & J.A.Nyberg Plicosepalus acaciae (Zucc.) Wiens & Polhill Plicosepalus curviflorus Tiegh. | 13.8 5.3 5.3 |
Vachellia tortilis subsp. tortilis | 1.2.3.4 | PH | Per. | IND | SA-AR + SU-ZA | Loranthella deflersii (Tiegh.) S.Blanco & C.E.Wetzel | 26.7 |
Moraceae | |||||||
Ficus carica L. | 3,4 | PH | Per. | EXO | SA-AR + SU-ZA | Phragmanthera austroarabica A.G.Mill. & J.A.Nyberg | 20 |
Ficus Palmata Forssk. | 1.2.3.4 | PH | Per. | IND | SA-AR+ ME+TRO | Phragmanthera austroarabica A.G.Mill. & J.A.Nyberg | 1.5 |
Oleaceae | |||||||
Olea europaea subsp. cuspidata (Wall. & G.Don) Cif. | 2.3.4 | PH | Per. | IND | SA-AR + SU-ZA | Phragmanthera austroarabica A.G.Mill. & J.A.Nyberg | 2.9 |
Polygonaceae | |||||||
Rumex nervosus Vahl | 1.2.3.4 | TH | Ann. | IND | SA-AR + SU-ZA | Orobanche mutelii F.W.Schultz Orobanche cernua Loefl. | 9.7 4.2 |
Rhamnaceae | |||||||
Ziziphus spina-christi (L.) Willd. | 1.2.3.4 | PH | Per. | IND | SA-AR + SU-ZA | Phragmanthera austroarabica A.G.Mill. & J.A.Nyberg Viscum schimperi Engl. | 7.4 30.1 |
Scrophulariaceae | |||||||
Buddleja polystachya Fresen. | 3,4 | PH | Per. | IND | SA-AR + SU-ZA | Phragmanthera austroarabica A.G.Mill. & J.A.Nyberg | 4.8 |
Solanaceae | |||||||
Nicotiana glauca Graham | 1.2.3.4 | PH | Per. | EXO | PAN | Cuscuta campestris Yunck | 0.1 |
Tamaricaceae | |||||||
Tamarix aphylla (L.) H.Karst. | 1.2.3.4 | PH | Per. | IND | SU-ZA + IR-TR | Phragmanthera austroarabica A.G.Mill. & J.A.Nyberg Viscum schimperi Engl. Plicosepalus acaciae (Zucc.) Wiens & Polhill Plicosepalus curviflorus Tiegh. | 3.8 5.1 1.3 4.3 |
Tamarix senegalensis DC. | 1.2.3.4 | PH | Per. | IND | SA-AR+SU-ZA+ME | Loranthella deflersii (Tiegh.) S.Blanco & C.E.Wetzel | 15.6 |
References
- Nickrent, D.L. Parasitic angiosperms: How often and how many? Taxon 2020, 69, 5–27. [Google Scholar] [CrossRef]
- Al-Juhani, W.; Al Thagafi, N.T.; Al-Qthanin, R.N. Gene Losses and Plastome Degradation in the Hemiparasitic Species Plicosepalus acaciae and Plicosepalus curviflorus: Comparative Analyses and Phylogenetic Relationships among Santalales Members. Plants 2022, 11, 1869. [Google Scholar] [CrossRef] [PubMed]
- Těšitel, J. Functional biology of parasitic plants: A review. Plant Ecol. Evol. 2016, 149, 5–20. [Google Scholar] [CrossRef]
- Těšitel, J.; Li, A.R.; Knotková, K.; McLellan, R.; Bandaranayake, P.C.; Watson, D.M. The bright side of parasitic plants: What are they good for? Plant Physiol. 2021, 185, 1309–1324. [Google Scholar] [CrossRef]
- Těšitel, J.; Mládek, J.; Fajmon, K.; Blažek, P.; Mudrák, O. Reversing expansion of Calamagrostis epigejos in a grassland biodiversity hotspot: Hemiparasitic Rhinanthus major does a better job than increased mowing intensity. Appl. Veg. Sci. 2018, 21, 104–112. [Google Scholar] [CrossRef]
- Fibich, P.; Lepš, J.; Chytrý, M.; Těšitel, J. Root hemiparasitic plants are associated with high diversity in temperate grasslands. J. Veg. Sci. 2017, 28, 184–191. [Google Scholar] [CrossRef]
- Demey, A.; Rüttingm, T.; Huygens, D.; Staelens, J.; Hermy, M.; Verheyen, K.; Boeckx, P. Hemiparasitic litter additions alter gross nitrogen turnover in temperate semi-natural grassland soils. Soil Biol. Biochem. 2014, 68, 419–428. [Google Scholar] [CrossRef]
- Těšitel, J.; Mládek, J.; Horník, J.; Těšitelová, T.; Adamec, V.; Tichý, L. Suppressing competitive dominants and community restoration with native parasitic plants using the hemiparasitic Rhinanthus alectorolophus and the dominant grass Calamagrostis epigejos. J. Appl. Ecol. 2017, 54, 1487–1495. [Google Scholar] [CrossRef]
- Wu, A.P.; Zhong, W.; Yuan, J.R.; Qi, L.Y.; Chen, F.L.; Liang, Y.S.; He, F.F.; Wang, Y.H. The factors affecting a native obligate parasite, Cuscuta australis, in selecting an exotic weed, Humulus scandens, as its host. Sci. Rep. 2019, 9, 3–10. [Google Scholar] [CrossRef]
- Těšitel, J.; Cirocco, R.M.; Facelli, J.M.; Watling, J.R. Native parasitic plants: Biological control for plant invasions? Appl. Veg. Sci. 2020, 23, 464–469. [Google Scholar] [CrossRef]
- Zagorchev, L.; Stöggl, W.; Teofanova, D.; Li, J.; Kranner, I. Plant parasites under pressure: Effects of abiotic stress on the interactions between parasitic plants and their hosts. Int. J. Mol. Sci. 2021, 22, 7418. [Google Scholar] [CrossRef] [PubMed]
- Ashapkin, V.V.; Kutueva, L.I.; Aleksandrushkina, N.I.; Vanyushin, B.F.; Teofanova, D.R.; Zagorchev, L.I. Genomic and Epigenomic Mechanisms of the Interaction between Parasitic and Host Plants. Int. J. Mol. Sci. 2023, 24, 2647. [Google Scholar] [CrossRef] [PubMed]
- Albanova, I.A.; Zagorchev, L.I.; Teofanova, D.R.; Odjakova, M.K.; Kutueva, L.I.; Ashapkin, V.V. Host resistance to parasitic plants—Current knowledge and future perspectives. Plants 2023, 12, 1447. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.M. Mistletoe—A keystone resource in forests and woodlands worldwide. Annu. Rev. Ecol. Syst. 2001, 32, 219–249. [Google Scholar] [CrossRef]
- Shin, H.W.; Lee, N.S. Understanding plastome evolution in hemiparasitic Santalales: Complete chloroplast genomes of three species, Dendrotrophe varians, Helixanthera parasitica, and Macrosolen cochinchinensis. PLoS ONE 2018, 13, e0200293. [Google Scholar] [CrossRef]
- Yoshida, S.; Cui, S.; Ichihashi, Y.; Shirasu, K. The haustorium, a specialized invasive organ in parasitic plants. Annu. Rev. Plant Biol. 2016, 67, 643–667. [Google Scholar] [CrossRef]
- Su, H.J.; Liang, S.l.; Nickrent, D.L. Plastome variation and phylogeny of Taxillus (Loranthaceae). PLoS ONE 2021, 16, 0256345. [Google Scholar] [CrossRef]
- Vidal-Russell, R.; Nickrent, D.L. Evolutionary relationship in the showy mistletoe family (Loranthaceae). Am. J. Bot. 2008, 95, 1015–1029. [Google Scholar] [CrossRef]
- Noman, O.M.; Mothana, R.A.; Al-Rehaily, A.J.; Nasr, F.A.; Khaled, J.M.; Alajmi, M.F.; Al-Said, M.S. Phytochemical analysis and anti-diabetic, anti-inflammatory and antioxidant activities of Loranthus acaciae Zucc. grown in Saudi Arabia. Saudi Pharm. J. 2019, 27, 724–730. [Google Scholar] [CrossRef]
- Al-Aklabi, A.; Al-Khulaidi, A.W.; Hussain, A.; Al-Sagheer, N. Main vegetation types and plant species diversity along an altitudinal gradient of Al Baha region, Saudi Arabia. Saudi J. Biol. Sci. 2016, 23, 687–697. [Google Scholar] [CrossRef]
- Al-Robai, S.A.; Mohamed, H.A.; Ahmed, A.A.; Al-Khulaidi, A.W.A. Effects of elevation gradients and soil components on the vegetation density and species diversity of Alabna escarpment, southwestern Saudi Arabia. Acta Ecol. Sin. 2019, 39, 202–211. [Google Scholar] [CrossRef]
- Al-Namazi, A.A.; Al-Khulaidi, A.W.A.; Algarni, S.; Al-Sagheer, N.A. Natural plant species inventory of hotspot areas in Arabian Peninsula: Southwest Al-Baha region, Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 3309–3324. [Google Scholar] [CrossRef] [PubMed]
- Abulfaith, H.A.; Emara, H.A. Altitudinal distribution of the hemiparasitic Loranthaceae in southwestern Saudi Arabia. Biotropica 1988, 20, 81–83. [Google Scholar] [CrossRef]
- Al-Rowaily, S.L.; Al-Nomari, G.S.; Assaeed, A.M.; Facelli, J.M.; Dar, B.M.; El-Bana, M.I.; Abd-ElGawad, A.M. Infection by Plicosepalus curviflorus mistletoe affects the nutritional elements of Acacia species and soil nutrient recycling in an arid rangeland. Plant Ecol. 2020, 221, 1017–1028. [Google Scholar] [CrossRef]
- Ibrahim, M.M. Study of cystic echinococcosis in slaughtered animals in Al Baha region, Saudi Arabia: Interaction between some biotic and abiotic factors. Acta Trop. 2010, 113, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.A. Flora of the Kingdom of Saudi Arabia; Ministry of Agriculture and Water: Riyadh, Saudi Arabia, 1999; Volume 1.
- Chaudhary, S.A. Flora of the Kingdom of Saudi Arabia; Ministry of Agriculture and Water: Riyadh, Saudi Arabia, 2000; Volume 2.
- Chaudhary, S.A. Flora of the Kingdom of Saudi Arabia; Ministry of Agriculture and Water: Riyadh, Saudi Arabia, 2001; Volume 3.
- Collenette, S. Wild Flowers of Saudi Arabia; National Commission for Wild Life Conservation and Development: Riyadh, Saudi Arabia, 1999. [Google Scholar]
- POWO (Plants of the World Online). Facilitated by Royal Botanic Gardens, Kew Botanical Garden. 2023. Available online: https://powo.science.kew.org/ (accessed on 3 June 2023).
- Raunkiaer, C. The Life Forms of Plants and Statistical Plant Geography; Clarendon Press: Oxford, UK, 1934. [Google Scholar]
- Govaerts, R.; Frodin, D.G.; Radcliffe-Smith, A.; Carter, S. World Checklist and Bibliography of Euphorbiaceae (with Pandaceae); Royal Botanic Gardens, Kew: London, UK, 2000. [Google Scholar]
- Wickens, G. The Flora of Jebel Marra (Sudan Republic) and Its Geographical Affinities. Kew Bull. Addit. Ser. 1978, 144, 496. [Google Scholar] [CrossRef]
- Zohary, M. Geobotanical Foundations of the Middle East; Gustav Fischer: Stuttgart, Germany, 1973. [Google Scholar]
- Phillips, E.A. Methods of Vegetation Study; Holt, Rhinehart and Winston, Inc.: New York, NY, USA, 1959. [Google Scholar]
- Mueller-Dombois, D.; Ellenberg, H. Aims and Methods of Vegetation Ecology; John Willey and Sons, Inc.: New York, NY, USA, 1974. [Google Scholar]
- Isa, N.; Razak, S.A.; Abdullah, R.; Khan, M.N.; Hamzah, S.N.; Kaplan, A.; Dossou-Yovo, H.O.; Ali, B.; Razzaq, A.; Wahab, S.; et al. Relationship between the Floristic Composition and Soil Characteristics of a Tropical Rainforest (TRF). Forests 2023, 14, 306. [Google Scholar] [CrossRef]
- WFO (World Flora Online). Facilitated by Royal Botanic Gardens, Kew and Missouri Botanical Garden. 2023. Available online: http://http://www.worldfloraonline.org/ (accessed on 3 June 2023).
- PFSA (Parasitic flora of Saudi Arabia). Cite maintained by Jacob Thomas, Herbarium, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, KSA. 2023. Available online: https://www.plantdiversityofsaudiarabia.info/index.htm (accessed on 3 June 2023).
- O’Neill, A.R.; Rana, S.K. An ethnobotanical analysis of parasitic plants (Parijibi) in the Nepal Himalaya. J. Ethnobiol. Ethnomed. 2016, 12, 14–28. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Q.; Sun, S. Diversity and distribution of parasitic angiosperms in China. Ecol. Evol. 2018, 8, 4378–4386. [Google Scholar] [CrossRef]
- Amico, G.C.; Nickrent, D.L.; Vidal-Russell, R. Macroscale analysis of mistletoe host ranges in the Andean-Patagonian forest. Plant Biol. 2019, 21, 150–156. [Google Scholar] [CrossRef]
- Hechinger, R.F.; Lafferty, K.D. Host diversity begets parasite diversity: Bird final hosts and trematodes in snail intermediate hosts. Proc. R. Soc. B Biol. Sci. 2005, 272, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Twyford, A.D. Parasitic plants. Curr. Biol. 2018, 28, R857–R859. [Google Scholar] [CrossRef]
- Brown, M.R.; Moore, P.G.P.; Twyford, A.D. Performance of generalist hemiparasitic Euphrasia across a phylogenetically diverse host spectrum. New Phytol. 2021, 232, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- Moral, J.; Lozano-Baena, M.D.; Rubiales, D. Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth. Front. Plant Sci. 2015, 6, 408. [Google Scholar] [CrossRef] [PubMed]
- Dawoud, D.A.; Sauerborn, J. Impact of drought stress and temperature on the parasitic weeds Striga hermonthica and Alectra vogelii in their early growth stages. Exp. Agric. 1994, 30, 249–257. [Google Scholar] [CrossRef]
- Migahid, A.M. Flora of Saudi Arabia, 4th ed.; King Saud University Press: Riyadh, Saudi Arabia, 1996; Volume 2. [Google Scholar]
- Yu, H.; Liu, J.; He, W.M.; Miao, S.L.; Dong, M. Cuscuta australis restrains three exotic invasive plants and benefits native species. Biol. Invasions 2011, 13, 747–756. [Google Scholar] [CrossRef]
- Li, J.; Jin, Z.; Song, W. Do native parasitic plants cause more damage to exotic invasive hosts than native non-invasive hosts? An implication for biocontrol. PLoS ONE 2012, 7, e34577. [Google Scholar] [CrossRef]
- Abdel Khalik, K.; Al-Gohary, I.; Al-Sodany, Y. Floristic composition and vegetation: Environmental relationships of Wadi Fatimah, Mecca, Saudi Arabia. Arid Land Res. Manag. 2017, 31, 316–334. [Google Scholar] [CrossRef]
- Muche, M.; Muasya, A.M.; Tsegay, B.A. Biology and resource acquisition of mistletoes, and the defense responses of host plants. Ecol. Process. 2022, 11, 24. [Google Scholar] [CrossRef]
- Medel, R.; Vergara, E.; Silva, A.; Kalin-Arroyo, M. Effects of vector behavior and host resistance on mistletoe aggregation. Ecology 2004, 85, 120–126. [Google Scholar] [CrossRef]
- Okubamichael, D.Y.; Grifths, M.E.; Ward, D. Host specifcity, nutrient and water dynamics of the mistletoe Viscum rotundifolium and its potential host species in the Kalahari of South Africa. J. Arid Environ. 2011, 75, 898–902. [Google Scholar] [CrossRef]
- Rist, L.; Shaanker, R.U.; Ghazoul, J. The spatial distribution of mistletoe in a Southern Indian tropical forest at multiple scales. Biotropica 2011, 43, 50–57. [Google Scholar] [CrossRef]
- Magray, J.A.; Wani, B.A.; Islam, T.; Ganie, A.H.; Nawchoo, I.A. Phyto-ecological analysis of Phytolacca acinosa Roxb. assemblages in Kashmir Himalaya, India. Front. For. Glob. Change 2022, 5, 976902. [Google Scholar] [CrossRef]
- Rashid, K.; Rashid, S.; Islam, T.; Ganie, A.H.; Nawchoo, I.A.; Ahmad Khuroo, A. Vegetation and soil ecology of threatened Himalayan Trillium habitats in Kashmir Himalaya. Nord. J. Bot. 2023, 2023, e03925. [Google Scholar] [CrossRef]
- AlNafie, A.H. Phytogeography of Saudi Arabia. Saudi J. Biol. Sci. 2008, 15, 159–176. [Google Scholar]
- Abbas, A.M.; Al-Kahtani, M.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Badry, M.O. Floristic diversity and phytogeography of Jabal Fayfa: A subtropical dry zone, south-west Saudi Arabia. Diversity 2020, 12, 345. [Google Scholar] [CrossRef]
- Luo, Y.; Sui, Y.; Gan, J.; Zhang, L. Host compatibility interacts with seed dispersal to determine small-scale distribution of a mistletoe in Xishuangbanna, Southwest China. J. Plant Ecol. 2016, 9, 77–86. [Google Scholar] [CrossRef]
- Ma, R.; Miao, N.; Zhang, H.; Tao, W.; Mao, K.; Moermond, T.C. Generalist mistletoes and their hosts and potential hosts in an urban area in southwest China. Urban For. Urban Green. 2020, 53, 126717. [Google Scholar] [CrossRef]
- Sargent, S. Seed fate in a tropical mistletoe: The importance of host twig size. Funct. Ecol. 1995, 9, 197–204. [Google Scholar] [CrossRef]
- Guerra, T.J.; Pizo, M.A.; Silva, W.R. Host specificity and aggregation for a widespread mistletoe in Campo Rupestre vegetation. Flora 2017, 238, 148–154. [Google Scholar] [CrossRef]
- Roxburgh, L.; Nicolson, S.W. Differential dispersal and survival of an African mistletoe: Does host size matter? Plant Ecol. 2008, 195, 21–31. [Google Scholar] [CrossRef]
- de Buen, L.L.; Ornelas, J.F.; García-Franco, J.G. Mistletoe infection of trees located at fragmented forest edges in the cloud forests of Central Veracruz, Mexico. For. Ecol. Manag. 2002, 164, 293–302. [Google Scholar] [CrossRef]
- Ndagurwa, H.G.; Mundy, P.J.; Dube, J.S.; Mlambo, D. Patterns of mistletoe infection in four Acacia species in a semi-arid southern African savanna. J. Trop. Ecol. 2012, 28, 523–526. [Google Scholar] [CrossRef]
- Aukema, J.E.; Martínez del Rio, C. Where does a fruit-eating bird deposit mistletoe seeds? Seed deposition patterns and an experiment. Ecology 2002, 83, 3489–3496. [Google Scholar] [CrossRef]
- Kokubugata, G.; Nakamura, K.; Forster, P.I.; Wilson, G.W.; Holland, A.E.; Hirayama, Y.; Yokota, M. Cassytha pubescens and C. glabella (Lauraceae) are not disjunctly distributed between Australia and the Ryukyu Archipelago of Japan—Evidence from morphological and molecular data. Aust. Syst. Bot. 2012, 25, 364–373. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, H.; Sanchez-Puerta, M.V.; Li, L.; Xiao, J.; Liu, Z.; Ci, X.; Li, J. Horizontal gene transfer has impacted cox1 gene evolution in Cassytha filiformis. J. Mol. Evol. 2020, 88, 361–371. [Google Scholar] [CrossRef]
- Zhang, H.; Florentine, S.; Tennakoon, K.U. The angiosperm stem hemiparasitic genus Cassytha (Lauraceae) and its host interactions: A review. Front. Plant Sci. 2022, 13, 864110. [Google Scholar] [CrossRef]
- Elkordy, A.; Nour, I.H.; Ellmouni, F.Y.; Al Shaye, N.A.; Al-Bakre, D.A.; EL-Banhawy, A. Floristic Diversity of Jabal Al-Ward, Southwest Tabuk Region, Kingdom of Saudi Arabia. Agronomy 2022, 12, 2626. [Google Scholar] [CrossRef]
- Erfanzadeh, R.; Pétillon, J.; Maelfait, J.P.; Hoffmann, M. Environmental Determinism versus Biotic Stochasticity in the Appearance of Plant Species in Salt-Marsh Succession. Plant Ecol. Evol. 2010, 143, 43–50. [Google Scholar] [CrossRef]
- Abdel Khalik, K.; El-Sheikh, M.; El-Aidarous, A. Floristic Diversity and Vegetation Analysis of Wadi Al-Noman, Mecca, Saudi Arabia. Turk. J. Bot. 2013, 37, 894–907. [Google Scholar] [CrossRef]
- Vico, G.; Brunsell, N.A. Tradeoffs between water requirements and yield stability in annual vs. perennial crops. Adv. Water Resour. 2018, 112, 189–202. [Google Scholar] [CrossRef]
- Zegeye, H.; Teketay, D.; Kelbessa, E. Diversity, regeneration status and socio-economic importance of the vegetation in the islands of Lake Ziway, south-central Ethiopia. Flora 2006, 201, 483–498. [Google Scholar] [CrossRef]
Chorotype | Parasitic Species | Host Species | ||
---|---|---|---|---|
Number of Species | Percentage (%) | Number of Species | Percentage (%) | |
Monoregional | ||||
AM | 1 | 12.5 | - | - |
SA-AR | 1 | 12.5 | - | - |
SU-ZA | 1 | 12.5 | - | - |
NEO | - | - | 1 | 4.35 |
PAN | - | - | 1 | 4.35 |
Biregional | ||||
SA-AR + SU-ZA | 3 | 37.5 | 18 | 78.3 |
SA-AR + IR-TR | 2 | 12.5 | - | - |
SU-ZA + IR-TR | 1 | 4.35 | ||
Pluriregional | ||||
SA-AR + SU-ZA + ME | - | - | 1 | 4.35 |
SA-AR + ME + TRO | - | - | 1 | 4.35 |
Total | 8 | 100 | 23 | 100 |
Parasite Species | D | RD | F | RF | A | RA | IVI |
---|---|---|---|---|---|---|---|
Cuscuta campestris Yunck. | 0.156 | 4.28 | 10.94 | 8.38 | 1.43 | 8.36 | 21.02 |
Loranthella deflersii (Tiegh.) S.Blanco & C.E.Wetzel | 0.072 | 1.98 | 6.56 | 5.02 | 1.1 | 6.43 | 13.43 |
Orobanche cernua Loefl. | 0.034 | 0.93 | 2.81 | 2.15 | 1.22 | 7.13 | 10.21 |
Orobanche mutelii F.W.Schultz | 0.269 | 7.38 | 19.06 | 14.59 | 1.41 | 8.25 | 30.22 |
Phragmanthera austroarabica A.G.Mill. & J.A.Nyberg | 1.825 | 50.08 | 37.81 | 28.95 | 4.83 | 28.25 | 107.28 |
Plicosepalus acaciae (Zucc.) Wiens & Polhill | 0.097 | 2.66 | 9.06 | 6.94 | 1.07 | 6.26 | 15.86 |
Plicosepalus curviflorus Tiegh. | 0.6 | 16.47 | 29.69 | 22.73 | 2.02 | 11.81 | 51.01 |
Viscum schimperi Engl. | 0.591 | 16.22 | 14.69 | 11.25 | 4.02 | 23.51 | 50.98 |
Total | 3.644 | 100 | 130.62 | 100 | 17.1 | 100 | 300.01 |
Host Species | D | RD | F | RF | A | RA | IVI |
---|---|---|---|---|---|---|---|
Barbeya oleoides Schweinf. | 0.28 | 1.61 | 13.13 | 3.2 | 2.14 | 2.22 | 7.03 |
Bidens biternata (Lour.) Merr. & Sherff | 1.11 | 6.38 | 13.44 | 3.27 | 8.26 | 8.56 | 18.21 |
Buddleja polystachya Fresen. | 0.07 | 0.4 | 4.06 | 0.99 | 1.62 | 1.68 | 3.07 |
Calotropis procera (Aiton) W.T.Aiton | 0.49 | 2.82 | 19.06 | 4.64 | 2.59 | 2.68 | 10.14 |
Ficus carica L. | 0.16 | 0.92 | 1.56 | 0.38 | 1 | 1.04 | 2.34 |
Ficus Palmata Forssk. | 0.61 | 3.51 | 24.38 | 5.93 | 2.5 | 2.59 | 12.03 |
Nicotiana glauca Graham | 2.17 | 12.47 | 13.44 | 3.27 | 16.12 | 16.71 | 32.45 |
Olea europaea subsp. cuspidata (Wall. & G.Don) Cif. | 1.18 | 6.78 | 33.44 | 8.14 | 3.53 | 3.66 | 18.58 |
Pistacia falcata Becc. ex Martelli. | 0.13 | 0.75 | 8.44 | 2.05 | 1.52 | 1.58 | 4.38 |
Pluchea dioscoridis (L.) DC. | 0.36 | 2.07 | 8.44 | 2.05 | 4.25 | 4.4 | 8.52 |
Pulicaria undulata (L.) C.A.Mey. | 1.79 | 10.29 | 12.5 | 3.04 | 14.35 | 14.87 | 28.2 |
Rumex nervosus Vahl | 0.68 | 3.91 | 10 | 2.43 | 6.75 | 7 | 13.34 |
Senegalia asak (Forssk.) Kyal. & Boatwr. | 1.76 | 10.11 | 56.56 | 13.76 | 3.12 | 3.23 | 27.1 |
Searsia retinorrhoea (Steud. ex Oliv.) Moffett | 0.94 | 5.4 | 5.94 | 1.45 | 1.579 | 1.64 | 8.49 |
Tamarix aphylla (L.) H.Karst. | 0.73 | 4.2 | 17.81 | 4.33 | 4.11 | 4.26 | 12.79 |
Tamarix senegalensis DC. | 0.1 | 0.57 | 3.75 | 0.91 | 2.67 | 2.77 | 4.25 |
Vachellia etbaica (Schweinf.) Kyal. & Boatwr. | 1.3 | 7.47 | 33.75 | 8.21 | 3.84 | 3.98 | 19.66 |
Vachellia flava (Forssk.) Kyal. & Boatwr. | 0.25 | 1.44 | 11.56 | 2.81 | 2.16 | 2.24 | 6.49 |
Vachellia gerrardii (Benth.) P.J.H.Hurter | 1.24 | 7.13 | 33.13 | 8.1 | 3.76 | 3.9 | 19.13 |
Vachellia origena (Hunde) Kyal. & Boatwr. | 0.8 | 4.6 | 23.75 | 5.78 | 3.38 | 3.5 | 13.88 |
Vachellia tortilis subsp. raddiana (Savi) Kyal. & Boatwr. | 0.48 | 2.76 | 22.5 | 5.48 | 2.11 | 2.19 | 10.43 |
Vachellia tortilis subsp. tortilis | 0.09 | 0.52 | 2.81 | 0.68 | 3.33 | 3.45 | 4.65 |
Ziziphus spina-christi (L.) Willd. | 0.68 | 3.91 | 37.5 | 9.13 | 1.8 | 1.87 | 14.91 |
Total | 17.4 | 100.02 | 410.95 | 100 | 96.489 | 100 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Robai, S.A. Ecology and Diversity of Angiosperm Parasites and Their Host Plants along Elevation Gradient in Al-Baha Region, Saudi Arabia. Diversity 2023, 15, 1065. https://doi.org/10.3390/d15101065
Al-Robai SA. Ecology and Diversity of Angiosperm Parasites and Their Host Plants along Elevation Gradient in Al-Baha Region, Saudi Arabia. Diversity. 2023; 15(10):1065. https://doi.org/10.3390/d15101065
Chicago/Turabian StyleAl-Robai, Sami Asir. 2023. "Ecology and Diversity of Angiosperm Parasites and Their Host Plants along Elevation Gradient in Al-Baha Region, Saudi Arabia" Diversity 15, no. 10: 1065. https://doi.org/10.3390/d15101065
APA StyleAl-Robai, S. A. (2023). Ecology and Diversity of Angiosperm Parasites and Their Host Plants along Elevation Gradient in Al-Baha Region, Saudi Arabia. Diversity, 15(10), 1065. https://doi.org/10.3390/d15101065