Large- and Small-Scale Climate Influences Spring Migration Departure Probability of American White Pelicans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Global Positioning System Tracking for Determining Spring Departure Timing
2.2. Daily North Atlantic Oscillation Index and Daily Southern Oscillation Index
2.3. Daily Ambient Temperature and Precipitation of the Non-Breeding Grounds in the Southeastern US
2.4. The Cox Proportional Hazards Regression for the Propensity of Spring Departures
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model | Model Terms | AIC |
---|---|---|
ms1 | age + sex + g + soi + nao + temp + prec + t × p | 426.09 |
ms2 | age + sex + g + soi + nao + temp + t × p | 447.26 |
ms3 | age + sex + g + soi + nao + prec + t × p | 425.75 |
ms4 | age + sex + g + soi + nao + temp + prec | 424.52 |
ms5 | age + sex + g + soi + nao + temp | 446.77 |
ms6 | age + sex + g + soi + nao + prec | 421.38 |
ms7 | age + sex + g + soi + nao + t × p | 444.31 |
Model | Model Terms | AIC |
---|---|---|
ms8 | age + sex + g + soi + nao + temp + prec + t × p | 426.09 |
ms9 | age + sex + g + soi + temp + prec + t × p | 426.58 |
ms10 | age + sex + g + nao + temp + prec + t × p | 435.10 |
ms11 | age + sex + g + temp + prec + t × p | 438.62 |
References
- Newton, I. The Migration Ecology of Birds; Academic Press: London, UK, 2008. [Google Scholar]
- Chapman, B.B.; Brönmark, C.; Nilsson, J.Å.; Hansson, L.A. The ecology and evolution of partial migration. Oikos 2011, 120, 1764–1775. [Google Scholar] [CrossRef]
- Pulido, F. Evolutionary genetics of partial migration—the threshold model of migration revis(it)ed. Oikos 2011, 120, 1776–1783. [Google Scholar] [CrossRef]
- Gienapp, P.; Leimu, R.; Merilä, J. Responses to climate change in avian migration time—Microevolution versus phenotypic plasticity. Clim. Res. 2007, 35, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Gordo, O. Why are bird migration dates shifting? A review of weather and climate effects on avian migratory phenology. Clim. Res. 2007, 35, 37–58. [Google Scholar] [CrossRef] [Green Version]
- Haest, B.; Hüppop, O.; Bairlein, F. The influence of weather on avian spring migration phenology: What, where and when? Glob. Chang. Biol. 2018, 24, 5769–5788. [Google Scholar] [CrossRef]
- Knudsen, E.; Lindén, A.; Both, C.; Jonzén, N.; Pulido, F.; Saino, N.; Sutherland, W.J.; Bach, L.A.; Coppack, T.; Ergon, T.; et al. Challenging claims in the study of migratory birds and climate change. Biol. Rev. 2011, 86, 928–946. [Google Scholar] [CrossRef] [Green Version]
- Stenseth, N.C.; Ottersen, G.; Hurrell, J.W.; Mysterud, A.; Lima, M.; Chan, K.S.; Yoccoz, N.G.; Ådlandsvik, B. Studying climate effects on ecology through the use of climate indices: The North Atlantic Oscillation, El Nino Southern Oscillation and beyond. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 2087–2096. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [Green Version]
- Stenseth, N.C.; Mysterud, A.; Ottersen, G.; Hurrell, J.W.; Chan, K.-S.; Lima, M. Ecological effects of climate fluctuations. Science 2002, 297, 1292–1296. [Google Scholar] [CrossRef] [Green Version]
- Forchhammer, M.C.; Post, E.; Stenseth, N.C. North Atlantic Oscillation timing of long- and short-distance migration. J. Anim. Ecol. 2002, 71, 1002–1014. [Google Scholar] [CrossRef]
- Ottersen, G.; Planque, B.; Belgrano, A.; Post, E.; Reid, P.C.; Stenseth, N.C. Ecological effects of the North Atlantic oscillation. Oecologia 2001, 128, 1–14. [Google Scholar] [CrossRef]
- Hüppop, O.; Hüppop, K.H. North Atlantic Oscillation and timing of spring migration in birds. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Marra, P.P.; Francis, C.M.; Mulvihill, R.S.; Moore, F.R. The influence of climate on the timing and rate of spring bird migration. Oecologia 2005, 142, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Miller-Rushing, A.J.; Lloyd-Evans, T.L.; Primack, R.B.; Satzinger, P. Bird migration times, climate change, and changing population sizes. Glob. Chang. Biol. 2008, 14, 1959–1972. [Google Scholar] [CrossRef]
- Van Buskirk, J.; Mulvihill, R.S.; Leberman, R.C. Variable shifts in spring and autumn migration phenology in North American songbirds associated with climate change. Glob. Chang. Biol. 2009, 15, 760–771. [Google Scholar] [CrossRef]
- Gilford, D.M.; Smith, S.R.; Griffin, M.L.; Arguez, A. Southeastern US Daily Temperature Ranges Associated with the El Niño–Southern Oscillation. J. Appl. Meteorol. Climatol. 2013, 52, 2434–2449. [Google Scholar] [CrossRef]
- Nag, B.; Misra, V.; Bastola, S. Validating ENSO teleconnections on Southeastern US winter hydrology. Earth Interact. 2014, 18, 1–23. [Google Scholar] [CrossRef]
- Knopf, F.L.; Evans, R.M. American white pelican (Pelecanus erythrorhyncos). In The Birds of North American; Poole, A., Ed.; Cornell Lab of Ornithology: Ithaca, NY, USA, 2004; pp. 1–20. [Google Scholar]
- King, D.T.; Anderson, D.W. Recent Population Status of the American White Pelican: A Continental Perspective. Waterbirds 2005, 28, 48–53. [Google Scholar] [CrossRef] [Green Version]
- King, D.T.; Wang, G.M.; Yang, Z.; Fischer, J.W. Advances and environmental conditions of spring migration phenology of American White Pelicans. Sci. Rep. 2017, 7, 40339. [Google Scholar] [CrossRef] [Green Version]
- Strait, L.E.; Sloan, N.F. Movements and mortality of juvenile white pelicans from North Dakota. Wilson Bull. 1975, 87, 54–59. [Google Scholar]
- Illan, J.G.; Wang, G.; Cunningham, F.L.; King, D.T. Seasonal effects of wind conditions on migration patterns of soaring American white pelican. PLoS ONE 2017, 12, e0186948. [Google Scholar]
- King, D.T.; Paulson, J.D.; Leblanc, D.J.; Bruce, K. Two capture techniques for American White Pelicans and Great Blue Herons. Waterbirds 1998, 21, 258–260. [Google Scholar] [CrossRef]
- Dorr, B.S.; King, D.T.; Harrel, J.B.; Gerard, P.; Spalding, M.G. The use of culmen length to determine sex of American White Pelicans (Pelecanus erythrorhynchos). Waterbirds 2005, 28, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Dunstan, T.C. A harness for radio-tagging raptorial birds. Inland Bird Band. News 1972, 44, 4–8. [Google Scholar]
- King, D.T.; Werner, S.J. Daily activity budgets and population size of American White Pelicans wintering in South Louisiana and the Delta Region of Mississippi. Waterbirds 2001, 24, 250–254. [Google Scholar] [CrossRef] [Green Version]
- Soriano-Redondo, A.; Acácio, M.; Franco, A.M.; Herlander Martins, B.; Moreira, F.; Rogerson, K.; Catry, I. Testing alternative methods for estimation of bird migration phenology from GPS tracking data. IBIS 2020, 162, 581–588. [Google Scholar] [CrossRef]
- Troup, A. The ‘southern oscillation’. Q. J. R. Meteorol. Soc. 1965, 91, 490–506. [Google Scholar] [CrossRef]
- Tableman, M.; Kim, J.S. Survival Analysis Using S: Analysis of Time-to-Event Data; Chapman and Hall/CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Gienapp, P.; Hemerik, L.; Visser, M.E. A new statistical tool to predict phenology under climate change scenarios. Glob. Chang. Biol. 2005, 11, 600–606. [Google Scholar] [CrossRef]
- Therneau, T.M.; Grambsch, P.M. Modeling Survival Data: Extended the Cox Model; Springer: New York, NY, USA, 2000; p. 350. [Google Scholar]
- Van de Pol, M.; Bailey, L.D.; McLean, N.; Rijsdijk, L.; Lawson, C.R.; Brouwer, L. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 2016, 7, 1246–1257. [Google Scholar]
- Bauer, S.; Gienapp, P.; Madsen, J. The relevance of environmental conditions for departure decision changes en route in migrating geese. Ecology 2008, 89, 1953–1960. [Google Scholar] [CrossRef] [Green Version]
- Schaper, S.V.; Dawson, A.; Sharp, P.J.; Gienapp, P.; Caro, S.P.; Visser, M.E. Increasing temperature, not mean temperature, is a cue for avian timing of reproduction. Am. Nat. 2011, 179, E55–E69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnham, K.P.; Anderson, D.R. Model Selection and Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Graham, M.H. Confronting multicollinearity in ecological multiple regression. Ecology 2003, 84, 2809–2815. [Google Scholar] [CrossRef] [Green Version]
- Harrell, F.E., Jr. rms: Regression Modeling Strategies, ver. 6.3. 2022. Available online: https://github.com/harrelfe/rms (accessed on 6 June 2022).
- Kelly, J.F.; Horton, K.G.; Stepanian, P.M.; Beurs, K.M.; Fagin, T.; Bridge, E.S.; Chilson, P.B. Novel measures of continental-scale avian migration phenology related to proximate environmental cues. Ecosphere 2016, 7, e01434. [Google Scholar] [CrossRef]
- Van Buskirk, J.; Mulvihill, R.S.; Leberman, R.C. Phenotypic plasticity alone cannot explain climate-induced change in avian migration timing. Ecol. Evol. 2012, 2, 2430–2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haig, S.M.; Murphy, S.P.; Matthews, J.H.; Arismendi, I.; Safeeq, M. Climate-altered wetlands challenge waterbird use and migratory connectivity in arid landscapes. Sci. Rep. 2019, 9, 4666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodds, W.K.; Bruckerhoff, L.; Batzer, D.; Schechner, A.; Pennock, C.; Renner, E.; Tromboni, F.; Bigham, K.; Grieger, S. The freshwater biome gradient framework: Predicting macroscale properties based on latitude, altitude, and precipitation. Ecosphere 2019, 10, e02786. [Google Scholar] [CrossRef] [Green Version]
- Cotton, P.A. Avian migration phenology and global climate change. Proc. Natl. Acad. Sci. USA 2003, 100, 12219–12222. [Google Scholar] [CrossRef] [Green Version]
- Haest, B.; Hüppop, O.; Bairlein, F. Weather at the winter and stopover areas determines spring migration onset, progress, and advancements in Afro-Palearctic migrant birds. Proc. Natl. Acad. Sci. USA 2020, 117, 17056–17062. [Google Scholar] [CrossRef]
- Illán, J.G.; WANG, G.; King, D.T.; Cunningham, F.L. Seasonal variation and tracking of climate niche of a migratory bird. Glob. Ecol. Conserv. 2022, 37, e02155. [Google Scholar] [CrossRef]
Model | NAO | SOI | PREC | Sex (M) | Age (im) | Ground (South) | AIC |
---|---|---|---|---|---|---|---|
m1 | 1.94 | 0.04 | 0.59 | 0.73 | −2.74 | −0.62 | 421.38 |
m2 | 1.18 | 0.05 | 1.18 | 2.29 | −0.63 | 440.71 | |
m3 | 0.05 | 0.53 | 0.92 | −2.58 | −0.66 | 424.73 | |
m4 | 1.52 | 0.51 | 0.38 | −2.24 | −0.30 | 446.96 | |
m5 | 0.05 | 1.32 | −2.28 | 436.49 | |||
m6 | 1.29 | 0.92 | −2.13 | −0.48 | 458.66 | ||
m7 | 0.51 | 0.73 | −2.31 | −0.49 | 448.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
King, D.T.; Wang, G.; Cunningham, F.L. Large- and Small-Scale Climate Influences Spring Migration Departure Probability of American White Pelicans. Diversity 2022, 14, 500. https://doi.org/10.3390/d14060500
King DT, Wang G, Cunningham FL. Large- and Small-Scale Climate Influences Spring Migration Departure Probability of American White Pelicans. Diversity. 2022; 14(6):500. https://doi.org/10.3390/d14060500
Chicago/Turabian StyleKing, D. Tommy, Guiming Wang, and Frederick L. Cunningham. 2022. "Large- and Small-Scale Climate Influences Spring Migration Departure Probability of American White Pelicans" Diversity 14, no. 6: 500. https://doi.org/10.3390/d14060500
APA StyleKing, D. T., Wang, G., & Cunningham, F. L. (2022). Large- and Small-Scale Climate Influences Spring Migration Departure Probability of American White Pelicans. Diversity, 14(6), 500. https://doi.org/10.3390/d14060500