Comparative Chloroplast Genomics in Phyllanthaceae Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection and DNA Extraction
2.2. Sequencing, De Novo Assembly, and Annotation of Chloroplast Genome
2.3. Analysis of Chloroplast Genome Features and Inverted Repeat Contraction and Expansion
2.4. Analysis of Codon Usage, Amino Acid Frequency, and Repeats
2.5. Synonymous, Non-Synonymous, Transition, and Transversion Substitution Analyses
2.6. Polymorphism of Protein-Coding Genes
2.7. Reconstruction of Phylogenetic Tree
3. Results
3.1. Chloroplast Genome Features and Organization
3.2. Phylogenetic Analysis
3.3. Inverted Repeat Contraction and Expansion
3.4. Codon Usage and Amino Acid Frequency, and Repeats
3.5. Synonymous and Non-Synonymous Substitutions
3.6. Transition and Transversion Substitutions
3.7. Intraspecies Variations in Chloroplast Genomes of Phyllanthus Emblica
3.8. Polymorphism of Protein-Coding Genes
4. Discussion
4.1. Chloroplast Genome Assembly from Whole Genome Sequencing and Comparative Chloroplast Genomics
4.2. Simple Sequence Repeats and Oligonucleotide Repeat Analyses
4.3. Phylogenetics Analysis and Suitable Polymorphic Loci for Further Phylogenetic Inference
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chase, M.W.; Christenhusz, M.J.M.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S.; Stevens, P.F.; et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar]
- Xi, Z.; Ruhfel, B.R.; Schaefer, H.; Amorim, A.M.; Sugumaran, M.; Wurdack, K.J.; Endress, P.K.; Matthews, M.L.; Stevens, P.F.; Mathews, S.; et al. Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proc. Natl. Acad. Sci. USA 2012, 109, 17519–17524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, P.; Kathriarachchi, H.; Wurdack, K. A phylogenetic classification of Phyllanthaceae (Malpighiales; Euphorbiaceae sensu lato). Kew Bull. 2006, 61, 37–53. [Google Scholar]
- Kathriarachchi, H.; Samuel, R.; Hoffmann, P.; Mlinarec, J.; Wurdack, K.J.; Ralimanana, H.; Stuessy, T.F.; Chase, M.W. Phylogenetics of tribe Phyllantheae (Phyllanthaceae; Euphorbiaceae sensu lato) based on nrITS and plastid matK DNA sequence data. Am. J. Bot. 2006, 93, 637–655. [Google Scholar] [CrossRef] [PubMed]
- Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Bouman, R.W.; Keßler, P.J.A.; Telford, I.R.H.; Bruhl, J.J.; Strijk, J.S.; Saunders, R.M.K.; van Welzen, P.C. Molecular phylogenetics of Phyllanthus sensu lato (Phyllanthaceae): Towards coherent monophyletic taxa. Taxon 2021, 70, 72–98. [Google Scholar] [CrossRef]
- Kathriarachchi, H.; Hoffmann, P.; Samuel, R.; Wurdack, K.J.; Chase, M.W. Molecular phylogenetics of Phyllanthaceae inferred from five genes (plastid atpB, matK, 3′ndhF, rbcL, and nuclear PHYC). Mol. Phylogenet. Evol. 2005, 36, 112–134. [Google Scholar] [CrossRef]
- Bouman, R.W.; Keßler, P.J.A.; Telford, I.R.H.; Bruhl, J.J.; Van Welzen, P.C. Subgeneric delimitation of the plant genus Phyllanthus (Phyllanthaceae). Blumea J. Plant. Taxon. Plant. Geogr. 2018, 63, 167–198. [Google Scholar] [CrossRef]
- Mao, X.; Wu, L.; Guo, H.; Chen, W.; Cui, Y.; Qi, Q.; Li, S.; Liang, W.; Yang, G.; Shao, Y.; et al. The genus Phyllanthus: An ethnopharmacological, phytochemical, and pharmacological review. Evid. Based Complement. Altern. Med. 2016, 2016, 7584952. [Google Scholar] [CrossRef] [Green Version]
- Gaire, B.P.; Subedi, L. Phytochemistry, pharmacology and medicinal properties of Phyllanthus emblica Linn. Chin. J. Integr. Med. 2014, 1–8. [Google Scholar] [CrossRef]
- Lim, T.K. Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2012; ISBN 978-94-007-1763-3. [Google Scholar]
- Mandal, A. A Review on Phytochemical, Pharmacological and Potential Therapeutic Uses of Phyllanthus Emblica. World J. Pharm. Res. 2017, 6, 817–830. [Google Scholar] [CrossRef]
- Lu, C.-C.; Yang, S.-H.; Hsia, S.-M.; Wu, C.-H.; Yen, G.-C. Inhibitory effects of Phyllanthus emblica L. on hepatic steatosis and liver fibrosis in vitro. J. Funct. Foods 2016, 20, 20–30. [Google Scholar] [CrossRef]
- Luo, W.; Zhao, M.; Yang, B.; Ren, J.; Shen, G.; Rao, G. Antioxidant and antiproliferative capacities of phenolics purified from Phyllanthus emblica L. fruit. Food Chem. 2011, 126, 277–282. [Google Scholar] [CrossRef]
- Zhao, T.; Sun, Q.; Marques, M.; Witcher, M. Anticancer Properties of Phyllanthus emblica (Indian Gooseberry). Oxidative Med. Cell. Longev. 2015, 2015, 950890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorontsova, M.S.; Hoffmann, P. Revision of the genus leptopus (Phyllanthaceae, Euphorbiaceae sensu lato). Kew Bull. 2009, 64, 627–644. [Google Scholar] [CrossRef]
- Daniell, H. Transgene containment by maternal inheritance: Effective or elusive? Proc. Natl. Acad. Sci. USA 2007, 104, 6879–6880. [Google Scholar] [CrossRef] [Green Version]
- Neale, D.B.; Sederoff, R.R. Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in Loblolly pine. Theor. Appl. Genet. 1989, 77, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Abdullah; Mehmood, F.; Shahzadi, I.; Waseem, S.; Mirza, B.; Ahmed, I.; Waheed, M.T. Chloroplast genome of Hibiscus rosa-sinensis (Malvaceae): Comparative analyses and identification of mutational hotspots. Genomics 2020, 112, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Menezes, A.P.A.; Resende-Moreira, L.C.; Buzatti, R.S.O.; Nazareno, A.G.; Carlsen, M.; Lobo, F.P.; Kalapothakis, E.; Lovato, M.B. Chloroplast genomes of Byrsonima species (Malpighiaceae): Comparative analysis and screening of high divergence sequences. Sci. Rep. 2018, 8, 2210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.-M.; Zhao, C.-Y.; Liu, X.-F. Complete Chloroplast Genome Sequences of Kaempferia Galanga and Kaempferia Elegans: Molecular Structures and Comparative Analysis. Molecules 2019, 24, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniell, H.; Lin, C.-S.; Yu, M.; Chang, W.-J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Cantino, P.D.; Olmstead, R.G.; Bramley, G.L.C.; Xiang, C.L.; Ma, Z.H.; Tan, Y.H.; Zhang, D.X. A large-scale chloroplast phylogeny of the Lamiaceae sheds new light on its subfamilial classification. Sci. Rep. 2016, 6, 34343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.-H.; Liu, Q.; Hu, W.; Wang, T.; Xue, Q.; Messing, J. Dynamics of chloroplast genomes in green plants. Genomics 2015, 106, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Saina, J.K.; Li, Z.Z.; Gichira, A.W.; Liao, Y.Y. The complete chloroplast genome sequence of tree of heaven (Ailanthus altissima (mill.) (sapindales: Simaroubaceae), an important pantropical tree. Int. J. Mol. Sci. 2018, 19, 929. [Google Scholar] [CrossRef] [Green Version]
- Abdullah; Mehmood, F.; Heidari, P.; Ahmed, I.; Poczai, P. Pseudogenization of trnT-GGU in chloroplast genomes of the plant family Asteraceae. bioRxiv 2021. [Google Scholar] [CrossRef]
- Alqahtani, A.A.; Jansen, R.K. The evolutionary fate of rpl32 and rps16 losses in the Euphorbia schimperi (Euphorbiaceae) plastome. Sci. Rep. 2021, 11, 7466. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.D. Comparative organization of chloroplast genomes. Annu. Rev. Genet. 1985, 19, 325–354. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I. Evolutionary Dynamics in Taro; Massey University: Palmerston North, New Zealand, 2014. [Google Scholar]
- Li, L.-F.; Wang, H.-Y.; Zhang, C.; Wang, X.-F.; Shi, F.-X.; Chen, W.-N.; Ge, X.-J. Origins and Domestication of Cultivated Banana Inferred from Chloroplast and Nuclear Genes. PLoS ONE 2013, 8, e80502. [Google Scholar] [CrossRef] [Green Version]
- Henriquez, C.L.; Arias, T.; Pires, J.C.; Croat, T.B.; Schaal, B.A. Phylogenomics of the plant family Araceae. Mol. Phylogenet. Evol. 2014, 75, 91–102. [Google Scholar] [CrossRef]
- Zhai, W.; Duan, X.; Zhang, R.; Guo, C.; Li, L.; Xu, G.; Shan, H.; Kong, H.; Ren, Y. Chloroplast genomic data provide new and robust insights into the phylogeny and evolution of the Ranunculaceae. Mol. Phylogenet. Evol. 2019, 135, 12–21. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Yang, J.; Lv, G. Complete chloroplast genome of seven Fritillaria species, variable DNA markers identification and phylogenetic relationships within the genus. PLoS ONE 2018, 13, e0194613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah; Henriquez, C.L.; Mehmood, F.; Hayat, A.; Sammad, A.; Waseem, S.; Waheed, M.T.; Matthews, P.J.; Croat, T.B.; Poczai, P.; et al. Chloroplast genome evolution in the Dracunculus clade (Aroideae, Araceae). Genomics 2021, 113, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.K.; Cai, Z.; Raubeson, L.A.; Daniell, H.; dePamphilis, C.W.; Leebens-Mack, J.; Muller, K.F.; Guisinger-Bellian, M.; Haberle, R.C.; Hansen, A.K.; et al. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. USA 2007, 104, 19369–19374. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Matthews, P.J.; Biggs, P.J.; Naeem, M.; Mclenachan, P.A.; Lockhart, P.J. Identification of chloroplast genome loci suitable for high-resolution phylogeographic studies of Colocasia esculenta (L.) Schott (Araceae) and closely related taxa. Mol. Ecol. Resour. 2013, 13, 929–937. [Google Scholar] [CrossRef]
- Liu, H.; Wei, J.; Yang, T.; Mu, W.; Song, B.; Yang, T.; Fu, Y.; Wang, X.; Hu, G.; Li, W.; et al. Molecular digitization of a botanical garden: High-depth whole-genome sequencing of 689 vascular plant species from the Ruili Botanical Garden. Gigascience 2019, 8, 1–9. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Milne, I.; Bayer, M.; Cardle, L.; Shaw, P.; Stephen, G.; Wright, F.; Marshall, D. Tablet-next generation sequence assembly visualization. Bioinformatics 2009, 26, 401–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq—Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef] [PubMed]
- Laslett, D.; Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004, 32, 11–16. [Google Scholar] [CrossRef]
- Lehwark, P.; Greiner, S. GB2sequin—A file converter preparing custom GenBank files for database submission. Genomics 2019, 111, 759–761. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple Alignment of Conserved Genomic Sequence With Rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef] [Green Version]
- Lawrie, D.S.; Messer, P.W.; Hershberg, R.; Petrov, D.A. Strong purifying selection at synonymous sites in D. melanogaster. PLoS Genet. 2013, 9, e1003527. [Google Scholar] [CrossRef] [Green Version]
- Murrell, B.; Wertheim, J.O.; Moola, S.; Weighill, T.; Scheffler, K.; Kosakovsky Pond, S.L. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 2012, 8, e1002764. [Google Scholar] [CrossRef] [Green Version]
- Murrell, B.; Moola, S.; Mabona, A.; Weighill, T.; Sheward, D.; Kosakovsky Pond, S.L.; Scheffler, K. FUBAR: A fast, unconstrained bayesian AppRoximation for inferring selection. Mol. Biol. Evol. 2013, 30, 1196–1205. [Google Scholar] [CrossRef] [Green Version]
- Delport, W.; Poon, A.F.Y.; Frost, S.D.W.; Pond, S.L. Datamonkey 2010: A suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 2010, 26, 2455–2457. [Google Scholar] [CrossRef] [Green Version]
- Mehmood, F.; Abdullah; Ubaid, Z.; Shahzadi, I.; Ahmed, I.; Waheed, M.T.; Poczai, P.; Mirza, B. Plastid genomics of Nicotiana (Solanaceae): Insights into molecular evolution, positive selection and the origin of the maternal genome of Aztec tobacco (Nicotiana rustica). PeerJ 2020, 8, e9552. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Abdullah; Henriquez, C.L.; Mehmood, F.; Carlsen, M.M.; Islam, M.; Waheed, M.T.; Poczai, P.; Croat, T.B.; Ahmed, I. Complete chloroplast genomes of Anthurium huixtlense and Pothos scandens (Pothoideae, Araceae): Unique inverted repeat expansion and contraction affect rate of evolution. J. Mol. Evol. 2020, 88, 562–674. [Google Scholar] [CrossRef]
- Lockhart, P.; Novis, P.; Milligan, B.G.; Riden, J.; Rambaut, A.; Larkum, T. Heterotachy and Tree Building: A Case Study with Plastids and Eubacteria. Mol. Biol. Evol. 2006, 23, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Zhu, A.; Guo, W.; Gupta, S.; Fan, W.; Mower, J.P. Evolutionary dynamics of the plastid inverted repeat: The effects of expansion, contraction, and loss on substitution rates. New Phytol. 2016, 209, 1747–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Kuma, K.I.; Toh, H.; Miyata, T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.S.; Kwak, M.; Lee, B.; Park, S.J. Complete chloroplast genome of tetragonia tetragonioides: Molecular phylogenetic relationships and evolution in caryophyllales. PLoS ONE 2018, 13, e0199626. [Google Scholar] [CrossRef]
- Henriquez, C.L.; Abdullah; Ahmed, I.; Carlsen, M.M.; Zuluaga, A.; Croat, T.B.; Mckain, M.R. Evolutionary dynamics of chloroplast genomes in subfamily Aroideae (Araceae). Genomics 2020, 112, 2349–2360. [Google Scholar] [CrossRef] [PubMed]
- Abdullah; Henriquez, C.L.; Mehmood, F.; Shahzadi, I.; Ali, Z.; Waheed, M.T.; Croat, T.B.; Poczai, P.; Ahmed, I. Comparison of chloroplast genomes among Species of Unisexual and Bisexual clades of the monocot family Araceae. Plants 2020, 9, 737. [Google Scholar] [CrossRef] [PubMed]
- Henriquez, C.L.; Abdullah; Ahmed, I.; Carlsen, M.M.; Zuluaga, A.; Croat, T.B.; Mckain, M.R. Molecular evolution of chloroplast genomes in Monsteroideae (Araceae). Planta 2020, 251, 72. [Google Scholar] [CrossRef]
- Shahzadi, I.; Abdullah; Mehmood, F.; Ali, Z.; Ahmed, I.; Mirza, B. Chloroplast genome sequences of Artemisia maritima and Artemisia absinthium: Comparative analyses, mutational hotspots in genus Artemisia and phylogeny in family Asteraceae. Genomics 2020, 112, 1454–1463. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Biggs, P.J.; Matthews, P.J.; Collins, L.J.; Hendy, M.D.; Lockhart, P.J. Mutational dynamics of aroid chloroplast genomes. Genome Biol. Evol. 2012, 4, 1316–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millen, R.S.; Olmstead, R.G.; Adams, K.L.; Palmer, J.D.; Lao, N.T.; Heggie, L.; Kavanagh, T.A.; Hibberd, J.M.; Gray, J.C.; Morden, C.W.; et al. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant. Cell 2001, 13, 645–658. [Google Scholar] [CrossRef] [Green Version]
- Abdullah; Waseem, S.; Mirza, B.; Ahmed, I.; Waheed, M.T. Comparative analyses of chloroplast genomes of Theobroma cacao and Theobroma grandiflorum. Biologia 2020, 75, 761–771. [Google Scholar] [CrossRef]
- Poczai, P.; Hyvönen, J. The complete chloroplast genome sequence of the CAM epiphyte Spanish moss (Tillandsia usneoides, Bromeliaceae) and its comparative analysis. PLoS ONE 2017, 12, e0187199. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Qi, X.; Chen, J.; Sun, L.; Zhong, Y.; Fang, J.; Hu, C. The complete chloroplast genome sequence of Actinidia arguta using the PacBio RS II platform. PLoS ONE 2018, 13, e0197393. [Google Scholar] [CrossRef]
- Hu, Y.; Woeste, K.E.; Zhao, P. Completion of the Chloroplast Genomes of Five Chinese Juglans and Their Contribution to Chloroplast Phylogeny. Front. Plant. Sci. 2017, 7, 1955. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-L.; Ding, M.-Q.; Zou, C.-Y.; Zhu, X.-M.; Tang, Y.; Zhou, M.-L.; Shao, J.-R. Comparative analysis of four Buckwheat species based on morphology and complete chloroplast genome sequences. Sci. Rep. 2017, 7, 6514. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, F.; Abdullah; Ubaid, Z.; Bao, Y.; Poczai, P. Comparative Plastomics of Ashwagandha (Withania, Solanaceae) and Identification of Mutational Hotspots for Barcoding Medicinal Plants. Plants 2020, 9, 752. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, F.; Abdullah; Shahzadi, I.; Ahmed, I.; Waheed, M.T.; Mirza, B. Characterization of Withania somnifera chloroplast genome and its comparison with other selected species of Solanaceae. Genomics 2020, 112, 1522–1530. [Google Scholar] [CrossRef]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae. PLoS ONE 2018, 13, e0196069. [Google Scholar] [CrossRef] [PubMed]
- Iram, S.; Hayat, M.Q.; Tahir, M.; Gul, A.; Abdullah; Ahmed, I. Chloroplast genome sequence of Artemisia scoparia: Comparative analyses and screening of mutational hotspots. Plants 2019, 8, 476. [Google Scholar] [CrossRef] [Green Version]
- McDonald, M.J.; Wang, W.C.; Da Huang, H.; Leu, J.Y. Clusters of nucleotide substitutions and insertion/deletion mutations are associated with repeat sequences. PLoS Biol. 2011, 9, e1000622. [Google Scholar] [CrossRef] [Green Version]
- Abdullah; Mehmood, F.; Shahzadi, I.; Ali, Z.; Islam, M.; Naeem, M.; Mirza, B.; Lockhart, P.; Ahmed, I.; Waheed, M.T. Correlations among oligonucleotide repeats, nucleotide substitutions and insertion-deletion mutations in chloroplast genomes of plant family Malvaceae. J. Syst. Evol. 2021, 59, 388–402. [Google Scholar] [CrossRef]
- Abdullah; Henriquez, C.L.; Croat, T.B.; Poczai, P.; Ahmed, I. Mutational dynamics of aroid chloroplast genomes II. Front. Genet. 2021, 11, 610838. [Google Scholar] [CrossRef]
- Abdullah; Mehmood, F.; Rahim, A.; Heidari, P.; Ahmed, I.; Poczai, P. Comparative plastome analysis of Blumea, with implications for genome evolution and phylogeny of Asteroideae. Ecol. Evol. 2021, 11, 7810–7826. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Y.; Henry, R.J.; Rossetto, M.; Wang, Y.; Chen, S. Plant DNA barcoding: From gene to genome. Biol. Rev. 2014, 90, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.B.; Park, H.-S.; Lee, S.-C.; Lee, J.; Park, J.Y.; Yang, T.-J. Authentication markers for five major Panax species developed via comparative analysis of complete chloroplast genome sequences. J. Agric. Food Chem. 2017, 65, 6298–6306. [Google Scholar] [CrossRef] [PubMed]
Category for Gene | Group of Gene | Name of Gene | Number | ||||
---|---|---|---|---|---|---|---|
Photosynthesis-related genes | Photosystem Ⅰ | psaA | psaB | psaC | psaI | psaJ | 5 |
Photosystem Ⅱ | psbA | psbK | psbI | psbM | psbD | 15 | |
psbF | psbC | psbH | psbJ | psbL | |||
psbE | psbN | psbB | psbT | psbZ | |||
Cytochrome b/f complex | petN | petA | petL | petG | petD * | 6 | |
petB * | |||||||
ATP synthase | atpI | atpH | atpA | atpF | atpE | 6 | |
atpB | |||||||
Cytochrome c-type synthesis | ccsA | 1 | |||||
Assembly/stability of photosystem Ⅰ | ycf3 ** | ycf4 | 2 | ||||
NADPH dehydrogenase | ndhB *,a | ndhH | ndhA * | ndhI | ndhG | 12 | |
ndhJ | ndhE | ndhF | ndhC | ndhK | |||
ndhD | |||||||
Rubisco | rbcL | 1 | |||||
Transcription and translation related genes RNA genes | Transcription Small subunit of ribosome | rpoA | rpoC2 | rpoC1 * | rpoB | rps16 *,£Ψ | 5 |
rps7 a | rps15 | rps19 $ | rps3 | rps8 | 14 | ||
rps14 | rps11 | rps12 a,* | rps18 | rps4 | |||
rps2 | rps19 Ψ | ||||||
Large subunit of ribosome | rpl2 a,*,$ | rpl23 a | rpl32 | rpl22 | rpl14 | 11 | |
rpl33 | rpl36 | rpl20 | rpl16 * | ||||
Ribosomal RNA | rrn16 a | rrn4.5 a | rrn5 a | rrn23 a | 8 | ||
Transfer RNA | trnV-GAC a | trnI-CAU a | trnA-UGC a,* | trnN-GUU a | trnP-UGG | 37 | |
trnW-CCA | trnV-UAC * | trnL-UAA * | trnF-GAA | trnR-ACG a | |||
trnT-UGU | trnG-UCC * | trnT-GGU | trnR-UCU | trnE-UUC | |||
trnY-GUA | trnD-GUC | trnC-GCA | trnS-GCU | trnH-GUG | |||
trnK-UUU * | trnQ-UUG | trnfM-CAU | trnG-GCC | trnS-UGA | |||
trnS-GGA | trnL-UAG | trnM-CAU | trnL-CAA a | trnI-GAU *,a | |||
Other genes | RNA processing | matK | 1 | ||||
Carbon metabolism | cemA | 1 | |||||
Fatty acid synthesis | accD | 1 | |||||
Proteolysis | clpP ** | 1 | |||||
Component of TIC complex | ycf1 | ycf1 Ψ | 2 | ||||
Hypothetical proteins | ycf2 a | 2 | |||||
Total | 131 |
Characteristic | Baccaurea ramiflora | Breynia fruticosa | Flueggea virosa | Glochidion chodoense | Leptopus cordifolius | Phyllanthus amarus | Phyllanthus emblica (Pak) | Phyllanthus emblica (China) | Sauropus spatulifolius | |
---|---|---|---|---|---|---|---|---|---|---|
Size (base pair; bp) | 161,093 | 155,630 | 158,075 | 157,085 | 155,027 | 157,673 | 156,477 | 156,208 | 154,707 | |
LSC length (bp) | 89,503 | 85,065 | 87,604 | 85,304 | 83,627 | 85,855 | 89,932 | 85,674 | 87,438 | |
SSC length (bp) | 18,818 | 19,441 | 19,303 | 17,635 | 17,424 | 17,564 | 19,293 | 19,310 | 19,427 | |
IR length (bp) | 26,386 | 25,562 | 25,584 | 27,073 | 26,988 | 27,128 | 25,611 | 25,612 | 23,921 | |
Number of unique genes | 111 (128) | 112 (129) | 112 (129) | 112 (129) | 111 (128) | 112 (129) | 112 (129) | 112 (129) | 112 (128) | |
Protein-coding genes | 77 (83) | 78 (84) | 78 (84) | 78 (83) | 77 (83) | 78 (84) | 78 (84) | 78 (84) | 78 (83) | |
tRNA genes | 30 (37) | 30 (37) | 30 (37) | 30 (37) | 30 (37) | 30 (37) | 30 (37) | 30 (37) | 30 (37) | |
rRNA genes | 4 (8) | 4 (8) | 4 (8) | 4 (8) | 4 (8) | 4 (8) | 4 (8) | 4 (8) | 4 (8) | |
Duplicate genes | 19 a | 19 a | 19 a | 18 a | 19 a | 18 a | 19 a | 19 a | 18 a | |
GC content | Total (%) | 36.7 | 36.7 | 36.6 | 36.7 | 36.8 | 36.6 | 36.7 | 36.8 | 36.6 |
LSC (%) | 34.4 | 34.5 | 34.3 | 34.4 | 34.6 | 34.4 | 34.4 | 34.5 | 34.4 | |
SSC (%) | 30.8 | 30.2 | 30.4 | 30.2 | 30.1 | 30.2 | 30.2 | 30.2 | 30.1 | |
IR (%) | 42.7 | 43 | 43 | 42.3 | 42.3 | 36.6 | 43.1 | 43.1 | 43.2 | |
CDS (%) | 37.8 | 37.4 | 37.5 | 37.4 | 37.3 | 37.4 | 37.4 | 37.4 | 37.3 | |
rRNA (%) | 55.5 | 55.4 | 55.4 | 55.4 | 55.4 | 55.3 | 55.5 | 55.5 | 55.4 | |
tRNA (%) | 53.4 | 53.4 | 53.3 | 53.2 | 53.2 | 53.1 | 53 | 53 | 53.3 | |
Non-coding regions (%) | 32.5 | 32.4 | 32.4 | 32.6 | 32.9 | 32.4 | 32.6 | 32.6 | 32.4 | |
Accession number | MT900598 | MT863745 | BK059210 ** | MK056235 | MZ424188 * | MN736962 | MN122078 * | MN711725 | MT089915 |
Gene | Total Number of Mutations | Alignment Length | Alignment Length without InDels | Nucleotide Diversity | Missing Data |
---|---|---|---|---|---|
rpl22 | 113 | 513 | 372 | 0.10887 | 27.49 |
ycf1 | 1422 | 5865 | 5449 | 0.08388 | 7.09 |
matK | 342 | 1541 | 1521 | 0.06901 | 1.30 |
ndhF | 417 | 2201 | 2105 | 0.06127 | 4.36 |
rps15 | 52 | 291 | 261 | 0.06117 | 10.31 |
rpl20 | 66 | 354 | 354 | 0.05841 | 0 |
ccsA | 170 | 972 | 957 | 0.05717 | 1.54 |
rps3 | 105 | 687 | 645 | 0.05078 | 6.11 |
rps8 | 67 | 405 | 405 | 0.05018 | 0 |
rpl16 | 64 | 411 | 408 | 0.05007 | 0.73 |
ndhD | 239 | 1524 | 1520 | 0.05007 | 0.26 |
accD | 224 | 1524 | 1458 | 0.04774 | 4.33 |
cemA | 66 | 477 | 477 | 0.0456 | 0 |
ycf4 | 77 | 563 | 549 | 0.04417 | 2.49 |
rps11 | 58 | 417 | 417 | 0.04368 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, U.; Sultana, N.; Abdullah; Jamal, A.; Muzaffar, M.; Poczai, P. Comparative Chloroplast Genomics in Phyllanthaceae Species. Diversity 2021, 13, 403. https://doi.org/10.3390/d13090403
Rehman U, Sultana N, Abdullah, Jamal A, Muzaffar M, Poczai P. Comparative Chloroplast Genomics in Phyllanthaceae Species. Diversity. 2021; 13(9):403. https://doi.org/10.3390/d13090403
Chicago/Turabian StyleRehman, Umar, Nighat Sultana, Abdullah, Abbas Jamal, Maryam Muzaffar, and Peter Poczai. 2021. "Comparative Chloroplast Genomics in Phyllanthaceae Species" Diversity 13, no. 9: 403. https://doi.org/10.3390/d13090403
APA StyleRehman, U., Sultana, N., Abdullah, Jamal, A., Muzaffar, M., & Poczai, P. (2021). Comparative Chloroplast Genomics in Phyllanthaceae Species. Diversity, 13(9), 403. https://doi.org/10.3390/d13090403