A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W. Greece)
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Javor, B.J. Planktonic standing crop and nutrients in a saltern ecosystem 1. Limnol. Oceanogr. 1983, 28, 153–159. [Google Scholar] [CrossRef]
- Wen, Z.; Zhi-Hui, H. Biological and ecological features of inland saline waters in North Hebei, China. Int. J. Salt Lake Res. 1999, 8, 267–285. [Google Scholar] [CrossRef]
- Davis, S.J. Biological and physical management information for commercial solar saltworks. In Proceedings of the 1st Intern Conf. Ecological Importance of Solar Saltworks (CEISSA 06), Santorini, Greece, 20–22 October 2006; pp. 5–14. [Google Scholar]
- Borowitzka, M.A. Microalgae for aquaculture: Opportunities and constraints. J. Appl. Phycol. 1997, 9, 393–401. [Google Scholar] [CrossRef]
- DasSarma, S.; Arora, P. Halophiles. In Encyclopedia of Life Sciences; Nature Publ. Group: London, UK, 2002; Volume 8, pp. 458–466. [Google Scholar]
- Oren, A. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 2002, 28, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.; Caporaso, J.G.; Walker, J.J.; Spear, J.; Gold, N.J.; Robertson, C.; Hugenholtz, P.; Goodrich, J.; McDonald, D.; Knights, D.; et al. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J. 2012, 7, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Podell, S.; Ugalde, J.A.; Narasingarao, P.; Banfield, J.F.; Heidelberg, K.; Allen, E.E. Assembly-Driven Community Genomics of a Hypersaline Microbial Ecosystem. PLoS ONE 2013, 8, e61692. [Google Scholar] [CrossRef] [PubMed]
- Oren, A. A hundred years of Dunaliella research: 1905–2005. Saline Syst. 2005, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.A.; Polle, J.; Tran, D.; Cushman, J.C.; Jin, E.-S.; Varela, J.C. The unicellular green alga Dunaliella salina Teod. as a model for abiotic stress tolerance: Genetic advances and future perspectives. Algae 2011, 26, 3–20. [Google Scholar] [CrossRef]
- Camara, M.R. Dispersal of Artemia franciscana Kellogg (Crustacea, Anostraca) Populations in the Coastal Saltworks of Rio Grande do Norte, Northeastern Brazil. Hydrobiologia 2001, 466, 145–148. [Google Scholar]
- Saygi, Y. Characterization of the parthenogenic Artemia populations from Camalti (Izmir, Turkey) and Kalloni (Lesvos, Greece). Survival, growth, maturation, biometrics, fatty acid profiles and hatching characteristics. Hydrobiologia 2004, 52, 227–239. [Google Scholar] [CrossRef]
- Dolapsakis, P.N.; Tafas, T.; Abatzopoulos, J.T.; Ziller, S.; Economou-Amilli, A. Abundance and growth response of micro-algae at Megalon Embolon solar saltworks in northern Greece: An aquaculture prospect. J. Appl. Phycol. 2005, 17, 39–49. [Google Scholar] [CrossRef]
- Sournia, A. Atlas du Phytoplankton Marin. Cyanophycées, Dictyochophycées, Dinophycées, Raphidophycées; CNRS: Paris, France, 1986; p. 219. [Google Scholar]
- Ricard, M. Atlas du Phytoplankton Marin. Diatomophycées; CNRS: Paris, France, 1987; p. 297. [Google Scholar]
- Foissner, W.; Berger, H. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshw. Biol. 1996, 35, 375–482. [Google Scholar] [CrossRef]
- Tomas, C.R. Identifying marine Diatoms and Dinoflagellates; Academic Press: San Diego, CA, USA, 1996; 565p. [Google Scholar]
- Lee, J.; Leedale, G.; Bradbury, P. An Illustrated Guide to the Protozoa, Volumes I & II; Society of the Protozoologists: Law-Rence, KS, USA, 2000; pp. 1–1432. [Google Scholar]
- Fontaneto, D.; De Smet, H.W.; Melone, G. Identification key to the genera of marine rotifers worldwide. In Meiofauna Marina; Verlag, Dr. Friedrich Pfeil: München, Germany, 2008; Volume 16, pp. 75–99. [Google Scholar]
- Basuri, C.K.; Pazhaniyappan, E.; Munnooru, K.; Chandrasekaran, M.; Vinjamuri, R.R.; Karri, R.; Mallavarapu, R.V. Composition and distribution of planktonic ciliates with indications to water quality in a shallow hypersaline lagoon (Pulicat Lake, India). Environ. Sci. Pollut. Res. 2020, 27, 18303–18316. [Google Scholar] [CrossRef] [PubMed]
- Shadrin, N.V.; Anufriieva, E.V. Structure and Trophic Relations in Hypersaline Environments. Biol. Bull. Rev. 2020, 10, 48–56. [Google Scholar] [CrossRef]
- Esteban, F.G.; Finlay, J.B. Marine ciliates (Protozoa) in central Spain. Ophelia 2004, 58, 13–22. [Google Scholar] [CrossRef]
- Hotos, G. Feeding with various microalgae the salt “loving” ciliate Fabrea salina in normal salinity 35 ppt. J. Sci. Food Agric. 2019, 3, 150–152. [Google Scholar] [CrossRef]
- Korovesis, A.K.; Hotos, G.; Zalidis, G. The role of the ciliate protozoan Fabrea salina in solar salt production. In Proceedings of the 10th World Salt Symposium, Park City, UT, USA, 19–21 June 2018. [Google Scholar]
- Avron, M.; Ben-Amotz, A. (Eds.) Dunaliella: Physiology, Biochemistry, and Biotechnology; CRC Press: Boca Raton, FL, USA, 1992; 256p. [Google Scholar]
- Hotos, G.N. A Short Review on the Halotolerant Green Microalga Asteromonas gracilis Artari with Emphasis on Its Uses. Asian J. Fish. Aquat. Res. 2019, 4, 1–8. [Google Scholar] [CrossRef]
- Anufriieva, E.; Shadrin, N. The long-term changes in plankton composition: Is Bay Sivash transforming back into one of the world’s largest habitats of Artemia sp. (Crustacea, Anostraca)? Aquac. Res. 2020, 51, 341–350. [Google Scholar] [CrossRef]
- Foissner, W. Protist diversity and distribution: Some basic considerations. Biodivers. Conserv. 2007, 17, 235–242. [Google Scholar] [CrossRef]
Salinity Range (ppt) | 50–80 | 81–110 | 111–130 | 131–160 | >160 | Culture Response |
---|---|---|---|---|---|---|
CYANOBACTERIA | ||||||
Synechococcus | +++ | ++++ | ++++ | + | + | 1×–2× |
Aphanothece | ++ | +++ | ++++ | + | - | 0 |
Microcystis | ++++ | +++ | ++ | - | - | 0 |
Cyanothece | + | ++ | ++++ | +++ | + | 3×–4× |
Oscillatoria | ++++ | +++ | ++ | - | - | 1×–2× |
Lyngbya | ++++ | ++ | + | - | - | 0 |
Aphanizomenon | +++ | ++++ | ++ | - | - | |
Cylindrospermopsis | ++ | +++ | + | + | - | |
Anabaena | +++ | + | - | - | - | 1×–2× |
Arthrospira | +++ | ++++ | ++++ | ++ | - | 1×–2× |
Beggiatoa | ++ | + | - | - | - | |
Scytonema | ++ | + | - | - | - | |
Prochlorothrix | + | - | - | - | - | |
Microcoleus | + | - | - | - | - | |
Tychonema | + | - | - | - | - | |
Pseudoanabaena | ++ | + | - | - | - | |
Phormidium | ++++ | + | - | - | - | >4× |
PROTOZOA | ||||||
Euplotes | ++++ | ++++ | ++ | + | - | >4× |
Uronychia | ++++ | + | - | - | - | 1×–2× |
Diophrys | ++++ | + | - | - | - | |
Frontonia | ++++ | ++ | + | - | - | 0 |
Dysteria | + | |||||
Aspidisca | ++++ | ++++ | ++ | - | - | |
Paramecium | ++++ | ++ | - | - | - | 1×–2× |
Euglena | ++ | - | - | - | - | 1×–2× |
Paraurostyla | +++ | ++ | + | - | - | |
Colpoda | ++++ | +++ | ++ | - | - | |
Coleps | ++ | - | - | - | - | 1×–2× |
Amphileptus | +++ | + | + | - | - | |
Condylostoma | ++++ | +++ | ++ | + | - | 2×–3× |
Amoeba | ++++ | ++++ | ++ | + | - | 2×–3× |
Holophrya | ++++ | ++ | + | + | - | |
Halteria | ++ | + | - | - | - | 0 |
Pleuronema | ++++ | ++ | ++ | + | - | 1×–2× |
Cyclidium | ++++ | ++++ | +++ | ++ | - | 2×–3× |
Loxodes | ++ | ++ | + | - | - | |
Litonotus | ++ | + | + | - | - | 1×–2× |
Chaetospira | +++ | + | + | + | - | |
Stichotria | +++ | + | + | - | - | |
Bursaridium | ++ | +++ | - | - | - | |
Climacostomum | ++++ | +++ | ++ | + | - | |
Blepharisma | ++++ | +++ | ++ | - | - | |
Holosticha | ++++ | ++ | + | - | - | |
Vorticella | ++++ | +++ | ++ | + | - | 2×–3× |
Remanella | ++++ | ++ | + | + | - | |
Lembandion | ++ | - | - | - | - | |
Strobidium | ++ | + | - | - | - | |
Uronema | ++++ | ++++ | ++ | + | - | |
Bursaria | ++ | - | - | - | - | |
Tracheloraphis | ++ | - | - | - | - | |
Lacrymaria | + | - | - | - | - | |
Hemiophrys | ++ | + | - | - | - | |
Fabrea salina | ++++ | ++++ | ++++ | ++++ | ++ | >4× |
Dileptus | ++++ | + | - | - | - | |
Colpodella | ++++ | +++ | ++ | - | - | 2×–3× |
Phialina | +++ | ++ | + | - | - | |
Choanoflagellates | ++ | + | - | - | - | |
MICROALGAE (Chlorophytes) | ||||||
Asteromonas gracilis | ++ | ++++ | ++++ | ++++ | ++++ | >4× |
Dunaliella | ++++ | ++++ | ++++ | ++++ | ++++ | >4× |
Tetraselmis marina | ++ | ++++ | +++ | + | - | 2×–3× |
Hymenomonas | ++++ | ++ | - | - | - | 0 |
MICROALGAE (Diatoms) | ||||||
Cymbella | ++++ | +++ | +++ | + | - | 1×–2× |
Caloneis | ++ | + | - | - | - | |
Cyclotella | ++++ | + | - | - | - | 3×–4× |
Craticula | ++ | + | - | - | - | |
Navicula | ++++ | ++++ | +++ | ++ | - | |
Nitzschia | ++++ | ++++ | ++++ | +++ | - | >4× |
Pleurosigma | ++++ | +++ | ++ | - | - | |
Entomoneis | +++ | + | - | - | - | |
Encyonema | ++ | + | - | - | - | |
Ulnaria | + | - | - | - | - | |
Pinnularia | ++ | + | - | - | - | |
Surinella | + | + | - | - | - | |
Neidium | ++ | - | - | - | - | |
Synendra | ++++ | ++ | + | + | - | |
Stauroneis | + | + | - | - | - | |
Gyrosigma | ++++ | ++ | + | - | - | 2×–3× |
Amphiprora | + | - | - | - | - | |
Eunotia | ++ | - | - | - | - | |
Epithemia | + | - | - | - | - | |
Diatoma | + | - | - | - | - | |
Cymatopleura | ++ | - | - | - | - | |
Cocconeis | ++++ | + | + | - | - | 2×–3× |
Cylindrotheca | ++ | ++ | + | + | - | 1×–2× |
DINOFLAGELLATES | ||||||
Gymnodinium | ++++ | ++ | - | - | - | |
ROTIFERS | ||||||
Hexarthra | ++ | - | - | - | - | 0 |
Pleurotrocha | ++++ | + | - | - | - | |
Epiphanes | ++ | - | - | - | - | 0 |
Encentrum | +++ | - | - | - | - | |
Lindia | ++++ | +++ | - | - | - | 0 |
Colurella | +++ | ++ | - | - | - | |
Testudinella | ++ | + | - | - | - | 1×–2× |
Brachionus plicatilis | ++ | - | - | - | - | >4× |
COPEPODS | ||||||
Tisbe | ++++ | +++ | - | - | - | >4× |
ANOSTRACA | ||||||
Artemia | ++++ | ++++ | ++++ | ++++ | ++++ | >4× |
NEMATODE | ||||||
Mesacanthoides | ++++ | ++++ | + | + | - | >4× |
FUNGI | ||||||
Alternaria | + | + | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hotos, G.N. A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W. Greece). Diversity 2021, 13, 270. https://doi.org/10.3390/d13060270
Hotos GN. A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W. Greece). Diversity. 2021; 13(6):270. https://doi.org/10.3390/d13060270
Chicago/Turabian StyleHotos, George N. 2021. "A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W. Greece)" Diversity 13, no. 6: 270. https://doi.org/10.3390/d13060270
APA StyleHotos, G. N. (2021). A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W. Greece). Diversity, 13(6), 270. https://doi.org/10.3390/d13060270