Advancing Amphibian Conservation through Citizen Science in Urban Municipalities
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Monitoring Amphibians
2.3. Quality Control
2.4. Occupancy Modeling
- P* is the cumulative probability of detection on a site over all K surveys,
- p is the single survey probability of detection from occupancy models,
- K is the number of surveys.
2.5. Participant Engagement
3. Results
3.1. Amphibian Ecology
3.2. Quality Control and Assurance
3.3. Participant Engagement Survey
4. Discussion
4.1. Enhanced Amphibian Ecological Knowledge
4.2. Lessons on Citizen Science Program Development
4.2.1. Engage Decision Makers Early
4.2.2. Data Quality Assessment
4.2.3. Balancing Data and Engagement Tensions
4.2.4. Conservation Messaging
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zari, M.P. The importance of urban biodiversity—An ecosystem services approach. Biodivers. Int. J. 2018, 2, 357–360. [Google Scholar] [CrossRef]
- Oliver, T.O.; Isaac, N.J.B.; August, T.A.; Woodcock, B.A.; Roy, D.B.; Bullock, J.M. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- UN Department of Economic and Social Affairs (UN DESA). Revision of World Urbanization Prospects. Available online: https://population.un.org/wup/ (accessed on 28 March 2021).
- Local Governments for Sustainability (ICLEI). Local Action for Biodiversity: An ICLEI and IUCN Programme; ICLEI: Bonn, Germany, 2017. [Google Scholar]
- Mason, T.H.E.; Pollard, C.R.J.; Chimalakonda, D.; Guerrero, A.M.; Kerr-Smith, C.; Milheiras, S.A.G.; Roberts, M.; Ngafack, P.R.; Bunnefeld, N. Wicked conflict: Using wicked problem thinking for holistic management of conservation conflict. Conserv. Lett. 2018, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rittel, H.W.J.; Webber, M.M. Dilemmas in a general theory of planning. Policy Sci. 1973, 4, 155–169. [Google Scholar] [CrossRef]
- Suwa, A.; Gasparatos, A.; Doll, C.; Iossifova, D.; Puppim de Oliviera, J.A.; Balaban, O.; Moreno-Penaranda, R. Cities, Biodiversity and Governance. Available online: https://ourworld.unu.edu/en/cities-biodiversity-and-governance (accessed on 29 March 2021).
- Pierce, J.R.; Barton, M.A.; Tan, M.M.J.; Oertel, G.; Halder, M.D.; Lopez-Guijosa, P.A.; Nuttall, R. Actions, indicators, and outputs in urban biodiversity plans: A multinational analysis of city practice. PLoS ONE 2020, 15, e0235773. [Google Scholar] [CrossRef]
- McDonnell, M.J. Linking and promoting research and practice in the evolving discipline of urban ecology. J. Urban Ecol. 2015, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sharman, M.; Mlambo, M.C. Wicked: The Problems of Biodivesrity Loss. GAIA 2012, 21, 274–277. [Google Scholar] [CrossRef]
- Cushman, S.A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv. 2006, 128, 231–240. [Google Scholar] [CrossRef]
- Konowalik, A.; Najbar, A.; Konowalik, K.; Dylewski, Ł.; Frydlewicz, M.; Kisiel, P.; Starzecka, A.; Zaleśna, A.; Kolenda, K. Amphibians in an urban environment: A case study from a central European city (Wrocław, Poland). Urban Ecosyst. 2020, 23, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Koen, E.L.; Bowman, J.; Sadowski, C.; Walpole, A.A. Landscape connectivity for wildlife: Development and validation of multispecies linkage maps. Methods Ecol. Evol. 2014, 5, 626–633. [Google Scholar] [CrossRef]
- Shulse, C.D.; Semlitsch, R.D.; Trauth, K.M.; Williams, A.D. Influences of design and landscape placement parameters on amphibian abundance in constructed wetlands. Wetlands 2010, 30, 915–928. [Google Scholar] [CrossRef]
- Dutta, H. Insights into the impacts of three environmental problems on Amphibians. Eur. J. Ecol. 2018, 4, 15–27. [Google Scholar] [CrossRef]
- Sordello, R.; Ratel, O.; De Lapachelle, F.F.; Leger, C.; Dambry, A.; Vanpeene, S. Evidence of the impact of noise pollution on biodiversity: A systematic map. Environ. Evid. 2020, 9, 1–27. [Google Scholar] [CrossRef]
- Calderon, M.R. Influence of water quality and habitat conditions on amphibian community metrics in rivers affected by urban activity. Urban Ecosyst. 2019, 22, 743–755. [Google Scholar] [CrossRef]
- Holtmann, L.; Philipp, K.; Becke, C.; Fartmann, T. Effects of habitat and landscape quality on amphibian assemblages of urban stormwater ponds. Urban Ecosyst. 2017, 20, 1249–1259. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, C.; Garcia-Vazquez, E. Urban ponds, neglected Noah’s ark for amphibians. J. Herpetol. 2012, 46, 507–514. [Google Scholar] [CrossRef]
- Parris, K.M. Urban amphibian assemblages as metacommunities. J. Anim. Ecol. 2006, 75, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.P.; Crump, J.P.; Martha, L. Extinction in Our Times: Global Amphibian Decline; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Scheffers, B.R.; Paszkowski, C.A. The effects of urbanization on North American amphibian species: Identifying new directions for urban conservation. Urban Ecosyst. 2012, 15, 133–147. [Google Scholar] [CrossRef]
- Kestemont, B. The bottom-up assessment of threatened species. Nat. Conserv. Res. 2019, 4, 93–106. [Google Scholar] [CrossRef]
- Chifundera, K.Z. Using diversity indices for identifying the priority sites for herpetofauna conservation in the democratic republic of the Congo. Nat. Conserv. Res. 2019, 4, 13–33. [Google Scholar] [CrossRef]
- Bridges, C.M.; Semlitsch, R.D. Variation in pesticide tolerance of tadpoles among and within species of Ranidae and patterns of amphibian decline. Conserv. Biol. 2000, 14, 1490–1499. [Google Scholar] [CrossRef]
- Sinsch, U. Migration and orientation in anuran amphibians. Ethol. Ecol. Evol. 1990, 2, 65–79. [Google Scholar] [CrossRef]
- Hussain, Q.A. Global amphibian declines: A review. Int. J. Biodivers. Conserv. 2012, 4, 348–357. [Google Scholar] [CrossRef]
- Kueller, C.; Kaiser-Bunbury, C.N. Reconciling conflicting perspectives for biodiversity conservation in the Anthropocene. Front. Ecol. Environ. 2014, 12, 131–137. [Google Scholar] [CrossRef]
- Riesch, H.; Potter, C. Citizen science as seen by scientists: Methodological, epistemological and ethical dimensions. Public Underst. Sci. 2013, 23, 107–120. [Google Scholar] [CrossRef]
- Follett, R.; Strezov, V. An analysis of citizen science based research: Usage and publication patterns. PLoS ONE 2015, 10, e0143687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinley, D.C.; Miller-Rushing, A.J.; Ballard, H.L.; Bonney, R.; Brown, H.; Cook-Patton, S.C.; Evans, D.M.; French, R.A.; Parrish, J.K.; Phillips, T.B.; et al. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Conserv. 2017, 208, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Sterrett, S.C.; Katz, R.A.; Fields, W.R.; Campbell Grant, E.H. The contribution of road-based citizen science to the conservation of pond-breeding amphibians. J. Appl. Ecol. 2019, 56, 988–995. [Google Scholar] [CrossRef]
- Tiago, P.; Pereira, H.M.; Capinha, C. Using citizen science data to estimate climatic niches and species distributions. Basic Appl. Ecol. 2017, 20, 75–85. [Google Scholar] [CrossRef]
- Cosentino, B.J.; Marsh, D.M.; Jones, K.S.; Apodaca, J.J.; Bates, C.; Beach, J.; Beard, K.H.; Becklin, K.; Bell, J.M.; Crockett, C.; et al. Citizen science reveals widespread negative effects of roads on amphibian distributions. Biol. Conserv. 2014, 180, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Mckinley, D.C.; Miller-rushing, A.J.; Ballard, H.L.; Bonney, R.; Brown, H.; Evans, D.M.; French, R.A.; Parrish, J.K.; Phillips, T.B.; Ryan, S.F.; et al. Investing in citizen science can improve natural resource management and environmental protection. Issues Ecol. 2015, 1–27. [Google Scholar]
- Phillips, T.B.; Ballard, H.L.; Lewenstein, B.V.; Bonney, R. Engagement in science through citizen science: Moving beyond data collection. Sci. Educ. 2019, 103, 665–690. [Google Scholar] [CrossRef]
- Bonney, R.; Byrd, J.; Carmichael, J.T.; Cunningham, L.; Oremland, L.; Shirk, J.; Harten, A.V.O.N. Sea change: Using citizen science to inform fisheries management. Bioscience 2021, 1, biab016. [Google Scholar] [CrossRef]
- Cruickshank, S.S.; Bühler, C.; Schmidt, B.R. Quantifying data quality in a citizen science monitoring program: False negatives, false positives and occupancy trends. Conserv. Sci. Pract. 2019, e54. [Google Scholar] [CrossRef] [Green Version]
- Gollan, J.; De Bruyn, L.L.; Reid, N.; Wilkie, L. Can Volunteers Collect Data that are Comparable to Professional Scientists? A Study of Variables Used in Monitoring the Outcomes of Ecosystem Rehabilitation. Environ. Manag. 2012, 50, 969–978. [Google Scholar] [CrossRef]
- City of Calgary. Calgary Wetland Conservation Plan; City of Calgary: Calgary, AB, Canada, 2004.
- Bushell, C. Central Region Leopard Frog Survey. Available online: https://www.alberta.ca/fisheries-and-wildlife-management-information-system-overview.aspx (accessed on 30 January 2020).
- Ehrenfeld, J.G. Evaluating wetlands within an urban context. Ecol. Eng. 2000, 15, 253–265. [Google Scholar] [CrossRef]
- Government of Alberta. Sensitive Species Inventory Guidelines; Government of Alberta: Stony Plain, AB, Canada, 2013.
- Miistakis Institute Call of the Wetland. Available online: http://www.callofthewetland.ca (accessed on 28 March 2021).
- MacKenzie, D.I.; Nichols, J.D.; Royle, J.A.; Pollock, K.H.; Bailey, L.; Hines, J.E. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 0124072453. [Google Scholar]
- Shonfield, J.; Bayne, E.M. Autonomous recording units in avian ecological research: Current use and future applications. Avian Conserv. Ecol. 2017, 12, 1–14. [Google Scholar] [CrossRef]
- Government of Saskatchewan. Species Detection Survey Protocol: 1.0 Amphibian Auditory Surveys; Government of Saskatchewan: Regina, SK, USA, 2020.
- Annich, N.C. Use of Bioacoustic Technology to Evaluate Habitat Use and Road Effects on Two Anuran Amphibians in the Boreal Region of Northeastern Alberta. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2017. [Google Scholar]
- Wildlife Accoustics Inc. Song Meter SM4: Bioacoustics Recorder User Guide; Wildlife Accoustics Inc.: Maynard, MA, USA, 2016. [Google Scholar]
- Manchester Metropolitan University Clustering and Classification Methods for Biologists: Classification Accuracy. Available online: http://www.alanfielding.co.uk/multivar/accuracy.htm (accessed on 3 March 2020).
- Eigenbrod, F.; Hecnar, S.J.; Fahrig, L. The relative effects of road traffic and forest cover on anuran populations. Biol. Conserv. 2008, 141, 35–46. [Google Scholar] [CrossRef]
- Dodd, C.K. Frogs of the United States and Canada, 2nd ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2013. [Google Scholar]
- Warton, D.I.; Hui, F.K.C. The arcsine is asinine: The analysis of proportions in ecology. Ecology 2011, 92, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.S.; Sanderson, K.; Lora Colquhoun, N. Amphibians at Risk: An Analysis of Wetland Habitat and Corridors Needed to Secure Amphibian Populations in Calgary; Miistakis Institute: Calgary, AB, Canada, 2020. [Google Scholar]
- Phillips, T.B.; Ferguson, M.; Minarchek, M.; Porticella, N.; Bonney, R. User’s Guide for Evaluating Learning Outcomes From Citizen Science; Cornell Lab of Ornithology: Ithaca, NY, USA, 2015. [Google Scholar]
- West, S.; Pateman, R. Recruiting and retaining participants in citizen science: What can be learned from the volunteering literature. Citiz. Sci. Theory Pract. 2016, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Magle, S.B.; Fidino, M.; Lehrer, E.W.; Gallo, T.; Mulligan, M.P.; Ríos, M.J.; Ahlers, A.A.; Angstmann, J.; Belaire, A.; Dugelby, B.; et al. Advancing urban wildlife research through a multi-city collaboration. Front. Ecol. Environ. 2019, 17, 232–239. [Google Scholar] [CrossRef]
- Rubbo, M.J.; Kiesecker, J.M. Amphibian breeding distribution in an urbanized landscape. Conserv. Biol. 2005, 19, 504–511. [Google Scholar] [CrossRef]
- Damiens, F.L.P.; Backstrom, A.; Gordon, A. Governing for “no net loss” of biodiversity over the long term: Challenges and pathways forward. One Earth 2021, 4, 60–74. [Google Scholar] [CrossRef]
- Todd, B.D.; Rose, J.P.; Price, S.J.; Dorcas, M.E. Using citizen science data to identify the sensitivity of species to human land use. Conserv. Biol. 2016, 30, 1266–1276. [Google Scholar] [CrossRef] [Green Version]
- Toogood, M. Engaging Publics: Biodiversity Data Collection and the Geographies of Citizen Science. Geogr. Compass 2013, 7, 611–621. [Google Scholar] [CrossRef]
- Westgate, M.J.; Scheele, B.C.; Ikin, K.; Hoefer, A.M.; Beaty, R.M.; Evans, M.; Osborne, W.; Hunter, D.; Rayner, L.; Driscoll, D.A. Citizen science program shows urban areas have lower occurrence of frog species, but not accelerated declines. PLoS ONE 2015, 10, e0140973. [Google Scholar] [CrossRef] [Green Version]
- Jarchow, C.J.; Hossack, B.R.; Sigafus, B.H.; Schwalbe, C.R.; Muths, E. Modeling habitat connectivity to inform reintroductions: A case study with the Chiricahua leopard frog. J. Herpetol. 2016, 50, 63–69. [Google Scholar] [CrossRef]
- Porej, D.; Micacchion, M.; Hetherington, T.E. Core terrestrial habitat for conservation of local populations of salamanders and wood frogs in agricultural landscapes. Biol. Conserv. 2004, 120, 399–409. [Google Scholar] [CrossRef]
- Browne, C.L.; Paszkowski, C.A.; Foote, A.L.; Moenting, A.; Boss, S.M. The relationship of amphibian abundance to habitat features across spatial scales in the Boreal Plains. Écoscience 2009, 16, 209–223. [Google Scholar] [CrossRef]
- Guerry, A.D.; Hunter, M.L. Amphibian distributions in a landscape of forests and agriculture: An examination of landscape composition and configuration. Conserv. Biol. 2002, 16, 745–754. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J. Declining urban and community tree cover in the United States. Urban For. Urban Green. 2018, 32, 32–55. [Google Scholar] [CrossRef]
- City of Calgary. Calgary Municipal Development Plan; City of Calgary: Calgary, AB, Canada, 2020.
- City of Calgary. Our BiodiverCity. Calgary’s 10 Year Biodiversity Strategic Plan; City of Calgary: Calgary, AB, Canada, 2015.
- City of Calgary. A City of Trees: Parks Urban Forest Strategic Plan; City of Calgary: Calgary, AB, Canada, 2007.
- City of Calgary. Natural Area Management Plan; City of Calgary: Calgary, AB, Canada, 1994.
- City of Calgary. The Riparian Action Program: A Blueprint for Resilience; City of Calgary: Calgary, AB, Canada, 2017.
- City of Calgary. Environmental Reserve Setback Guidelines; City of Calgary: Calgary, AB, Canada, 2007.
- Austen, G.E.; Bindemann, M.; Griffiths, R.A.; Roberts, D.L. Species identification by experts and non-experts: Comparing images from field guides. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Austen, G.E.; Bindemann, M.; Griffiths, R.A.; Roberts, D.L. Species identification by conservation practitioners using online images: Accuracy and agreement between experts. PeerJ 2018, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sewell, D.; Beebee, T.J.C.; Griffiths, R.A. Optimising biodiversity assessments by volunteers: The application of occupancy modelling to large-scale amphibian surveys. Biol. Conserv. 2010, 143, 2102–2110. [Google Scholar] [CrossRef]
- Altwegg, R.; Nichols, J.D. Occupancy models for citizen science data. Methods Ecol. Evol. 2019, 10, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, J.L.; Zuckerberg, B.; Bonter, D.N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 149–172. [Google Scholar] [CrossRef] [Green Version]
- Pandya, R.E. Framework for engaging diverse communities in citizen science in the US. Front. Ecol. Environ. 2012, 10, 314–317. [Google Scholar] [CrossRef]
- Stepenuck, K.F.; Genskow, K.D. Traits of volunteer water monitoring programs that influence natural resource management and policy impact. Soc. Nat. Resour. 2019, 32, 275–291. [Google Scholar] [CrossRef]
- Sterling, E.J.; Betley, E.; Sigouin, A.; Gomez, A.; Toomey, A.; Cullman, G.; Malone, C.; Pekor, A.; Arengo, F.; Blair, M.; et al. Assessing the evidence for stakeholder engagement in biodiversity conservation. Biol. Conserv. 2017, 209, 159–171. [Google Scholar] [CrossRef]
Confusion Matrix Categories | BCFR | WOFR |
---|---|---|
True Positive (participant recorded, acoustics recorded) | 11 | 3 |
True Negative (participant did not record, acoustics did not record) | 2 | 4 |
False Positive (participant recorded, acoustics did not record) | 0 | 0 |
False Negative (participant did not record, acoustics did record) | 3 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.S.; Kahal, N.L.; Kinas, H.L.; Randall, L.A.; Baker, T.M.; Carney, V.A.; Kendell, K.; Sanderson, K.; Duke, D. Advancing Amphibian Conservation through Citizen Science in Urban Municipalities. Diversity 2021, 13, 211. https://doi.org/10.3390/d13050211
Lee TS, Kahal NL, Kinas HL, Randall LA, Baker TM, Carney VA, Kendell K, Sanderson K, Duke D. Advancing Amphibian Conservation through Citizen Science in Urban Municipalities. Diversity. 2021; 13(5):211. https://doi.org/10.3390/d13050211
Chicago/Turabian StyleLee, Tracy S., Nicole L. Kahal, Holly L. Kinas, Lea A. Randall, Tyne M. Baker, Vanessa A. Carney, Kris Kendell, Ken Sanderson, and Danah Duke. 2021. "Advancing Amphibian Conservation through Citizen Science in Urban Municipalities" Diversity 13, no. 5: 211. https://doi.org/10.3390/d13050211
APA StyleLee, T. S., Kahal, N. L., Kinas, H. L., Randall, L. A., Baker, T. M., Carney, V. A., Kendell, K., Sanderson, K., & Duke, D. (2021). Advancing Amphibian Conservation through Citizen Science in Urban Municipalities. Diversity, 13(5), 211. https://doi.org/10.3390/d13050211