Relations between Benthic Diatom Community and Characteristics of Karst Ponds in the Alpine Region of Slovenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. Biotic Analyses
2.3. Data Analysis
3. Results
3.1. Structure of the Benthic Diatom Community
3.2. Effects of Environmental Factors on the Diatom Community Composition
3.3. Environmental Factors and Diversity of Diatom Community
4. Discussion
4.1. Structure of the Benthic Diatom Community
4.2. Diversity of Benthic Diatom Community and Environmental Factors
4.3. Correlations between Diatoms and Macroinvertebrates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Achnanthidium pyrenaicum (Hustedt) Kobayasi |
Achnanthidium minutissimum (Kützing) Czarnecki |
Adlafia minuscula (Grunow) Lange-Bertalot var. minuscula |
Amphora copulata (Kützing) Schoeman et Archibald |
Amphora pediculus (Kützing) Grunow |
Brachysira neoexilis Lange-Bertalot |
Caloneis tenuis (Gregory) Krammer |
Chamaepinnularia mediocris (Krasske) Lange-Bertalot |
Chamaepinnularia muscicola (Petersen) Kulikovskiy, Lange-Beralot et Witkowski |
Chamaepinnularia soehrensis (Krasske) Lange-Bertalot et Krammer |
Cocconeis pediculus Ehrenberg |
Craticula accomoda (Hustedt) D.G. Mann |
Craticula ambigua (Ehrenberg) D.G. Mann |
Craticula halophila (Grunow) D.G. Mann |
Craticula molestiformis (Hustedt) Lange-Bertalot |
Cyclotella stelligera Cleve & Grunow |
Cymbopleura amphicephala (Nägeli) Krammer |
Cymbopleura naviculiformis (Auerswald) Krammer |
Diploneis krammeri Lange-Bertalot et Reichardt |
Encyonema hebridicum Grunow ex Cleve |
Encyonema minutum (Hilse) D.G. Mann |
Encyonema silesiacum (Bleisch) D.G. Mann |
Eucocconeis alpestris (Brun) Lange-Bertalot |
Eunotia arcus Ehrenberg |
Eunotia bilunaris (Ehrenberg) Schaarschmidt |
Eunotia exigua (Brébisson) Rabenhorst |
Eunotia minor (Kützing) Grunow |
Eunotia paludosa Grunow |
Eunotia pseudogroenlandica Lange-Bertalot et Tagliaventi |
Eunotia subarcuatoides Alles, Nörpel et Lange-Bertalot |
Eunotia tenella (Grunow) Hustedt |
Fragilaria radians (Kützing) Williams et Round |
Fragilaria tenera (W. Smith) Lange-Bertalot |
Frustulia crassinervia (Brébisson) Lange-Bertalot et Krammer |
Gomphonema acuminatum Ehrenberg |
Gomphonema angustum (Kützing) Rabenhorst |
Gomphonema calcifugum Lange-Bertalot et Reichardt |
Gomphonema exilissimum (Grunow) Lange-Bertalot et Reichardt |
Gomphonema occultum Reichardt et Lange-Bertalot |
Gomphonema parvulum (Kützing) Kützing |
Gomphonema sarcophagus Gregory |
Hantzschia abundans Lange-Bertalot |
Luticola nivalis (Ehrenberg) D.G. Mann |
Luticola mutica (Kützing) D.G. Mann |
Meridion circulare (Gréville) C. Agardh |
Navicula antonii Lange-Bertalot |
Navicula cryptocephala Kützing |
Navicula cryptotenella Lange-Bertalot |
Navicula exilis Kützing |
Navicula menisculus Schumann |
Navicula reichardtiana Lange-Bertalot |
Navicula trivialis Lange-Bertalot |
Navicula veneta Kützing |
Navicula wildii Lange-Bertalot |
Neidium affine (Ehrenberg) Pfitzer |
Neidium alpinum Hustedt |
Neidium ampliatum (Ehrenberg) Krammer |
Neidium bergii (Cleve-Euler) Krammer |
Neidium binodeforme Krammer |
Neidium bisulcatum (Lagerstedt) Cleve var. bisulcatum |
Neidium dubium (Ehrenberg) Cleve |
Neidium iridis (Ehrenberg) Cleve |
Neidium productum (W. Smith) Cleve |
Nitzschia acicularis (Kützing) W. Smith |
Nitzschia adamata Hustedt |
Nitzschia angustata (W. Smith) Grunow |
Nitzschia communis Rabenhorst |
Nitzschia dissipata (Kützing) Grunow ssp. dissipata |
Nitzschia fonticola Grunow |
Nitzschia gisela Lange-Bertalot |
Nitzschia palea (Kützing) W. Smith |
Nitzschia perminuta (Grunow) M. Peragallo |
Nitzschia pura Hustedt |
Nitzschia pusilla Grunow |
Nitzschia supralitorea Lange-Bertalot |
Nitzschia umbonata (Ehrenberg) Lange-Bertalot |
Pinnularia borealis Ehrenberg |
Pinnularia gibba Ehrenberg |
Pinnularia grunowii Krammer |
Pinnularia interupta W. Smith |
Pinnularia marchica I. Schönfelder ex Krammer |
Pinnularia microstauron (Ehrenberg) Cleve |
Pinnularia rupestris Hantzsch |
Pinnularia sinistra Krammer |
Pinnularia subcapitata Gregory var. subcapitata |
Pinnularia viridiformis Krammer |
Placoneis ignorata (Schimanski) Lange-Bertalot |
Placoneis paraelginensis Lange-Bertalot |
Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot |
Psammothidium grischunum (Wunthrich) Bukhtiyarova et Round |
Psammothidium helveticum (Hustedt) Bukhtiyarova & Round |
Sellaphora pseudopupula (Krasske) Lange-Bertalot |
Sellaphora pupula (Kützing) Mereschkowsky (species group) |
Sellaphora stroemii (Hustedt) D.G.Mann |
Sellaphora verecundiae Lange-Bertalot |
Stauroneis acidoclinata Lang-Bertalot et Werum |
Stauroneis anceps Ehrenberg |
Stauroneis gracilis Ehrenberg |
Stauroneis kriegeri Patrick |
Stauroneis smithii Grunow |
Stauroneis thermicola (Petersen) Lund |
Stephanodiscus alpinus Hustedt |
Surirella angusta Kützing |
Surirella minuta Brébisson ex Kützing |
Tabellaria flocculosa (Roth) Kützing |
Sample | POK1 | POK2 | JEL1 | JEL2 | KRV1 | KRV3 | RAT1 | RAT2 | VEL3 | MEN1 | MEN2 | MEN4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
date | 23.8. | 23.8. | 23.8. | 23.8. | 19.8. | 19.8. | 23.8. | 23.8. | 19.8. | 18.8. | 18.8. | 18.8. |
pH | 5.9 | 3.8 | 6.5 | 6.4 | 6.7 | 8.3 | 7.4 | 6.5 | 5.9 | 9.6 | 7.2 | 6.2 |
T [°C] | 17.5 | 12.2 | 14.1 | 9.8 | 14.9 | 15.3 | 7.7 | 10.2 | 17.3 | 17.7 | 17.9 | 16.0 |
Conductivity [μS/cm] | 37 | 16 | 149 | 47 | 242 | 92 | 95 | 256 | 36 | 158 | 55 | 90 |
O2 saturation [%] | 75 | 53 | 56 | 62 | 10 | 69 | 56 | 74 | 100 | 244 | 90 | 25 |
O2 [mg/L] | 6.6 | 4.7 | 5.0 | 6.0 | 0.9 | 5.9 | 4.9 | 7.5 | 8.1 | 19.4 | 7.3 | 2.0 |
Secchi depth [cm] | 25 * | 30 * | 60 * | 55 * | 30 * | 13.0 | 20 * | 30 * | 35 | 10 | 56 | 36 |
depth [cm] | 25 | 30 | 60 | 55 | 30 | 100 | 20 | 30 | 40 | 20 | 100 | 48 |
Turbidity [1,2,3] | 1 | 1 | 1 | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 1 | 3 |
Clay, silt [%] | 100 | 100 | 100 | 90 | 80 | 5 | 100 | 100 | 100 | 95 | - | 100 |
Sand, gravel [%] | 0 | 0 | 0 | 10 | 20 | 65 | 0 | 0 | 0 | 0 | - | 0 |
Pebbles [%] | 0 | 0 | 0 | + | 0 | 30 | 0 | 0 | 0 | 5 | - | 0 |
Stones [%] | 0 | 0 | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 |
CPOM [%] | 0 | 20 | 0 | 0 | + | 5 | + | + | + | 0 | 1 | 0 |
FPOM [%] | 0 | 80 | 0 | 0 | 0 | 1 | 100 | 80 | 100 | 100 | 80 | 0 |
[%] of trampled shore | 1 | 1 | 0 | 45 | 70 | 70 | 20 | 0 | 50 | 100 | 0 | 80 |
Intensity of trampled shores (0–5) | 1 | 1 | 0 | 3 | 5 | 2 | 3 | 0 | 4 | 5 | 0 | 4 |
TP [mg/L] | 0.17 | 0.34 | 0.03 | 0.05 | 0.28 | 0.07 | 0.07 | 0.06 | 0.23 | 0.92 | 0.08 | 0.15 |
PO43- [mg/L] | 0.17 | 0.30 | 0.02 | 0.02 | 0.07 | 0.03 | 0.01 | 0.001 | 0.23 | 0.92 | 0.05 | 0.02 |
TN [mg/L] | 1.35 | 0.82 | 0.59 | 0.84 | 5.91 | 1.21 | 1.62 | 0.56 | 1.53 | 6.56 | 0.95 | 16.0 |
NO3-N [mg/L] | 0.39 | 0.52 | 0.30 | 0.34 | 0.42 | 0.26 | 0.41 | 0.30 | 0.32 | 0.40 | 0.21 | 0.42 |
NH4-N [mg/L] | 0.08 | 0.14 | 0.03 | 0.51 | 4.0 | 0.73 | 0.28 | 0.07 | 0.06 | 0.21 | 0.03 | 3.08 |
TDS [mg/l] | 72 | 70 | 96 | 50 | 120 | 78 | 94 | 58 | 80 | 226 | 74 | 92 |
TSS [mg/L] | 3 | 8 | 17 | 58 | 151 | 98 | 49 | 93 | 30 | 201 | 257 | 39 |
References
- Biggs, J.; Williams, P.; Whitfield, M.; Nicolet, P.; Weatherby, A. 15 years of pond assessment in Britain: Results and lessons learned from the work of Pond Conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 2005, 6, 693–714. [Google Scholar] [CrossRef]
- Oertli, B.; Biggs, J.; Céréghino, R.; Grillas, P.; Joly, P.; Lachavanne, J.-B. Conservation and monitoring of pond biodiversity: Introduction. Aquat. Conserv. Mar. Freshw. Ecosyst. 2005, 6, 535–540. [Google Scholar] [CrossRef]
- Declerck, S.; De Bie, T.; Ercken, D.; Hampel, H.; Schrijvers, S.; Van Wichelen, J.; Gillard, V.; Mandiki, R.; Losson, B.; Bau-wens, D.; et al. Ecological characteristics of small farmland ponds: Associations with land use practices at multiple spatial scales. Biol. Conserv. 2006, 131, 523–532. [Google Scholar] [CrossRef]
- Søndergaard, M.; Jeppesen, E.; Jensen, J.P. Pond or lake: Does it make any difference? Fundam. Appl. Limnol. 2005, 162, 143–165. [Google Scholar] [CrossRef]
- Davies, B.; Biggs, J.; Williams, P.; Whitfield, M.; Nicolet, P.; Sear, D.; Bray, S.; Maund, S. Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agric. Ecosyst. Environ. 2008, 125, 1–8. [Google Scholar] [CrossRef]
- Hassall, C.; Hollinshead, J.; Hull, A. Environmental correlates of plant and invertebrate species richness in ponds. Biodivers. Conserv. 2011, 20, 3189–3222. [Google Scholar] [CrossRef]
- Céréghino, R.; Biggs, J.; Oertli, B.; Declerck, S. The ecology of European ponds: Defining the characteristics of a neglected freshwater habitat. Hydrobiologia 2008, 597, 1–6. [Google Scholar] [CrossRef]
- Čelik, T.; Zelnik, I.; Babij, V.; Vreš, B.; Pirnat, A.; Seliškar, A.; Drovenik, B. Inventory of karstic ponds and their importance for biotic diversity. In Kras: Water and Life in a Rocky Landscape; Mihevc, A., Ed.; ZRC: Ljubljana, Slovenia, 2005; pp. 72–82. [Google Scholar]
- Zelnik, I.; Potisek, M.; Gaberščik, A. Environmental Conditions and Macrophytes of Karst Ponds. Pol. J. Environ. Stud. 2012, 21, 1911–1920. [Google Scholar]
- Zelnik, I.; Gregorič, N.; Tratnik, A. Diversity of macroinvertebrates positively correlates with diversity of macrophytes in karst ponds. Ecol. Eng. 2018, 117, 96–103. [Google Scholar] [CrossRef]
- Smol, J.P.; Stoermer, E.F. (Eds.) The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010; ISBN 978-1-107-56496-1. [Google Scholar]
- Hinden, H.; Oertli, B.; Menetrey, N.; Sager, L.; Lachavanne, J.-B. Alpine pond biodiversity: What are the related environmental variables? Aquat. Conserv. Mar. Freshw. Ecosyst. 2005, 15, 613–624. [Google Scholar] [CrossRef]
- Ilg, C.; Oertli, B. How can we conserve cold stenotherm communities in warming Alpine ponds? Hydrobiologia 2014, 723, 53–62. [Google Scholar] [CrossRef]
- Frisbie, M.P.; Lee, R.E. Inoculative Freezing and the Problem of Winter Survival for Freshwater Macroinvertebrates. J. N. Am. Benthol. Soc. 1997, 16, 635–650. [Google Scholar] [CrossRef]
- Ocón, C.S.; López van Oosterom, M.V.; Munoz, M.I.; Rodrigues-Capítulo, A. Macroinvertebrate trophic responses to nutrient addition in a temperate stream in South America. Arch. Hydrobiol. 2013, 182, 17–30. [Google Scholar] [CrossRef]
- Bella, V.D.; Mancini, L. Freshwater diatom and macroinvertebrate diversity of coastal permanent ponds along a gradient of human impact in a Mediterranean eco-region. Hydrobiologia 2009, 634, 25–41. [Google Scholar] [CrossRef]
- Berthon, V.; Bouchez, A.; Rimet, F. Using diatom life-forms and ecological guilds to assess organic pollution and trophic level in rivers: A case study of rivers in south-eastern France. Hydrobiologia 2011, 673, 259–271. [Google Scholar] [CrossRef]
- Sayer, C.D. Problems with the application of diatom-total phosphorus transfer functions: Examples from a shal-low English lake. Freshw. Biol. 2001, 46, 743–757. [Google Scholar] [CrossRef]
- Wu, N.; Faber, C.; Sun, X.; Qu, Y.; Wang, C.; Ivetic, S.; Riis, T.; Ulrich, U.; Fohrer, N. Importance of sampling fre-quency when collecting diatoms. Sci. Rep. 2016, 6, 36950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vis, C.; Hudon, C.; Cattaneo, A.; Pinel-Alloul, B. Periphyton as an indicator of water quality in the St Lawrence River (Québec, Canada). Environ. Pollut. 1998, 101, 13–24. [Google Scholar] [CrossRef]
- Revsbech, N.P.; Nielsen, J.; Hansen, P.K. Benthic Primary Production and Oxygen Profiles. In Nitrogen Cycling in Coastal Marine Environments; Blackburn, T.H., Sørensen, J., Eds.; John Wiley & Sons Ltd.: Hoboken, NY, USA, 1988; pp. 69–81. [Google Scholar]
- Battarbee, R.W.; Jones, V.J.; Flower, R.J.; Cameron, N.G.; Bennion, H.; Carvalho, L.; Juggins, S. Diatoms. In Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators, Developments in Paleoenvironmental Research; Smol, J.P., Birks, H.J., Last, W.M., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 155–202. [Google Scholar]
- Kröpfl, K.; Vladár, P.; Szabó, K.; Ács, É.; Borsodi, A.K.; Szikora, S.; Caroli, S.; Záray, G. Chemical and biological characterisation of biofilms formed on different substrata in Tisza river. Environ. Pollut. 2006, 144, 626–631. [Google Scholar] [CrossRef]
- Rimet, F.; Bouchez, A. Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowl. Manag. Aquat. Ecosyst. 2012, 406, 01. [Google Scholar] [CrossRef]
- Rimet, F.; Berthon, V.; Bouchez, A. Formes de vie, Guildes Écologiques et Classes de Tailles des Diatomées d’eau Douce; INRA, Station d’hydrobiologie lacustre: Thonon, France, 2010; p. 10. [Google Scholar]
- Zelnik, I.; Sušin, T. Epilithic Diatom Community Shows a Higher Vulnerability of the River Sava to Pollution during the Winter. Diversity 2020, 12, 465. [Google Scholar] [CrossRef]
- De Marco, P.; Nogueira, D.S.; Correa, C.C.; Vieira, T.B.; Silva, K.D.; Pinto, N.S.; Bichsel, D.; Hirota, A.S.V.; Vieira, R.R.S.; Carneiro, F.M.; et al. Patterns in the organization of Cerrado pond biodiversity in Brazilian pasture landscapes. Hydrobiologia 2014, 723, 87–101. [Google Scholar] [CrossRef]
- Šumberová, K.; Vild, O.; Ducháček, M.; Fabšičová, M.; Potužák, J.; Fránková, M. Drivers of Macrophyte and Diatom Diversity in a Shallow Hypertrophic Lake. Water 2021, 13, 1569. [Google Scholar] [CrossRef]
- Cantonati, M.; Lange-Bertalot, H.; Decet, F.; Gabrieli, J. Diatoms in very-shallow pools of the site of community importance Danta di Cadore Mires (south-eastern Alps), and the potential contribution of these habitats to diatom biodiversity conservation. Nova Hedwig. 2011, 93, 475–507. [Google Scholar] [CrossRef]
- Bella, D.V.; Puccinelli, C.; Marcheggiani, S.; Mancini, L. Benthic diatom communities and their relationship to water chemistry in wetlands of central Italy. J. Limnol. 2007, 43, 89–99. [Google Scholar] [CrossRef]
- Blanco, S.; Olenici, A.; Ortega, F.; Jiménez-Gómez, F.; Guerrero, F. Identifying environmental drivers of benthic diatom diversity: The case of Mediterranean mountain ponds. PeerJ 2020, 8, e8825. [Google Scholar] [CrossRef] [Green Version]
- Kochoska, H.; Zaova, D.; Videska, A.; Mitic-Kopanja, D.; Naumovska, H.; Wetzel, C.E.; Ector, L.; Levkov, Z. Sellaphora pelagonica (Bacillariophyceae), a new species from dystrophic ponds in the Republic of North Macedonia. Phytotaxa 2021, 496, 2. [Google Scholar] [CrossRef]
- Vidaković, D.; Levkov, Z.; Hamilton, P.B. Neidiopsis borealis sp. nov., a new diatom species from the mountain Shar Planina, Republic of North Macedonia. Phytotaxa 2019, 402, 21. [Google Scholar] [CrossRef]
- Mihevc, A.; Gabrovšek, F.; Knez, M.; Kozel, P.; Mulec, J.; Otoničar, B.; Petrič, M.; Pipan, T.; Prelovšek, M.; Slabe, T.; et al. Karst in Slovenia. Boletín Geológico y Minero 2016, 127, 79–97. [Google Scholar]
- Ogrin, D. Podnebni tipi v Sloveniji. Acta Geogr. K 1996, 68, 39–56. [Google Scholar]
- Hofmann, G.; Werum, M.; Lange-Bertalot, H. Diatomeen im Süßwasser-Benthos von Mitteleuropa: Bestimmungsflora Kieselalgen für die Ökologische Praxis; Koeltz Scientific Books: Königstein, Germany, 2013; p. 908. [Google Scholar]
- Lange-Bertalot, H.; Hofmann, G.; Werum, M.; Cantonati, M. Freshwater Benthic Diatoms of Central Europe. Over 800 Common Species Used in Ecological Assessment; English Edition with Updated Taxonomy and Added Species; Koeltz Scientific Books: Oberreifenberg, Germany, 2017; p. 942. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. 1. Teil: Naviculaceae. In Süβwasserflora von Mitteleuropa; Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., Eds.; Fischer: Jena, Germany, 1986; p. 876. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. 2. Teil: Epithemiaceae, Surirellaceae. In Süβwasserflora von Mitteleuropa; Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., Eds.; Fischer: Jena, Germany, 1988; p. 596. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Bacillariophyceae—Teil 3: Centrales, Fragilariaceae, Eunotiaceae. In Süβwasserflora von Mitteleuropa; Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., Eds.; Fischer: Jena, Germany, 1991; p. 576. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis. In Süβwasserflora von Mitteleuropa; Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., Eds.; Fischer: Jena, Germany, 1991; p. 437. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Rott, E.; Pipp, E.; Pfister, P.; Van Dahm, H.; Ortler, K.; Binder, N.; Pall, K. Indikationslisten fur Aufwuchsalgen in Östereichen Fließgevessern, Teil 2: Trophienindikation so vie geochemische Präferenz, Taxonomische und toxicologische Anmerkungen; Bundesministerium für Land und Forstwirtschaft: Wien, Austria, 1999; p. 248. [Google Scholar]
- Braak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination; Microcomputer Power: Ithaca, NY, USA, 2002; p. 500. [Google Scholar]
- Pan, Y.; Hughes, R.; Herlihy, A.; Kaufmann, P. Non-wadeable river bioassessment: Spatial variation of benthic diatom assemblages in Pacific Northwest rivers, USA. Hydrobiologia 2012, 684, 241–260. [Google Scholar] [CrossRef]
- Heine-Fuster, I.; López-Allendes, C.; Aránguiz-Acuña, A.; Véliz, D. Differentiation of Diatom Guilds in Extreme Environments in the Andean Altiplano. Front. Environ. Sci. 2021, 9, 266. [Google Scholar] [CrossRef]
- Licursi, M.; Gómez, N.; Sabater, S. Effects of nutrient enrichment on epipelic diatom assemblages in a nutrient-rich lowland stream, Pampa Region, Argentina. Hydrobiologia 2016, 766, 135–150. [Google Scholar] [CrossRef]
- Passy, S.I. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquat. Bot. 2007, 86, 171–178. [Google Scholar] [CrossRef]
- Gottschalk, S.; Kahlert, M. Shifts in taxonomical and guild composition of littoral diatom assemblages along environmental gradients. Hydrobiologia 2012, 694, 41–56. [Google Scholar] [CrossRef]
- Béres, V.; Török, P.; Kókai, Z.; Krasznai, E.T.; Tóthmérész, B.; Bácsi, I. Ecological diatom guilds are useful but not sensitive enough as indicators of extremely changing water regimes. Hydrobiologia 2014, 738, 191–204. [Google Scholar] [CrossRef]
- Zelnik, I.; Balanč, T.; Toman, M.J. Diversity and Structure of the Tychoplankton Diatom Community in the Limnocrene Spring Zelenci (Slovenia) in Relation to Environmental Factors. Water 2018, 10, 361. [Google Scholar] [CrossRef] [Green Version]
- Peszek, Ł.; Zgrundo, A.; Noga, T.; Kochman-Kędziora, N.; Poradowska, A.; Rybak, M.; Puchalski, C.; Lee, J. The influence of drought on diatom assemblages in aemperate climate zone: A case study from the Carpathian Mountains, Poland. Ecol. Indic. 2021, 125, 107579. [Google Scholar] [CrossRef]
- Lavoie, I.; Lento, J.; Morin, A. Inadequacy of size distributions of stream benthic diatoms for environmental monitoring. J. N. Am. Benthol. Soc. 2010, 29, 586–601. [Google Scholar] [CrossRef]
- Soininen, J.; Jamoneau, A.; Rosebery, J.; Passy, S.I. Global patterns and drivers of species and trait composition in diatoms: Global compositional patterns in stream diatom. Glob. Ecol. Biogeogr. 2016, 25, 940–950. [Google Scholar] [CrossRef]
- Scinto, L.J.; Reddy, K.R. Biotic and abiotic uptake of phosphorus by periphyton in a subtropical freshwater wetland. Aquat. Bot. 2003, 77, 203–222. [Google Scholar] [CrossRef]
- Haubois, A.G.; Sylvestre, F.; Guarini, J.M.; Richard, P.; Blanchard, G.F. Spatio-temporal structure of the epipelic diatom assemblage from an intertidal mudflat in Marennes-Oléron Bay, France. Estuar. Coast. Shelf Sci. 2005, 64, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. The use of ‘altitude’ in ecological research. Trends. Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef] [PubMed]
- van der Grinten, E.; Janssen, A.P.H.; de Mutsert, K.; Barranguet, C.; Admiraal, W. Temperature- and Light-Dependent Performance of the Cyanobacterium Leptolyngbya Foveolarum and the Diatom Nitzschia Perminuta in Mixed Biofilms. Hydrobiologia 2005, 548, 267–278. [Google Scholar] [CrossRef]
- Jurczak, T.; Wojtal-Frankiewicz, A.; Kaczkowski, Z.; Oleksińska, Z.; Bednarek, A.; Zalewski, M. Restoration of a shady urban pond—The pros and cons. J. Environ. Manag. 2018, 217, 919–928. [Google Scholar] [CrossRef] [PubMed]
- DeNicola, D.M. A review of diatoms found in highly acidic environments. Hydrobiologia 2000, 433, 111–122. [Google Scholar] [CrossRef]
- Krivograd-Klemenčič, A.; Smolar-Žvanut, N.; Istenič, D.; Griessler-Bulc, T. Algal community patterns in Slovenian bogs along environmental gradients. Biologia 2010, 65, 422–437. [Google Scholar] [CrossRef]
- Schmutzer, A.C.; Gray, M.J.; Burton, E.C.; Miller, D.L. Impacts of cattle on amphibian larvae and the aquatic environment. Freshw. Biol. 2008, 53, 2613–2625. [Google Scholar] [CrossRef]
- Connell, J.H. Diversity in tropical rainforests and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [Green Version]
- Gascón, S.; Boix, D.; Sala, J. Are different biodiversity metrics related to the same factors? A case study from Mediter-ranean wetlands. Biol. Conserv. 2009, 11, 2602–2612. [Google Scholar] [CrossRef]
- Feio, M.; Almeida, S.; Craveiro, S.; Calado, A. Diatoms and macroinvertebrates provide consistent and complementary information on environmental quality. Fundam. Appl. Limnol. 2007, 169, 247–258. [Google Scholar] [CrossRef]
- Lange, K.; Liess, A.; Piggott, J.J.; Townsend, C.R.; Matthaei, C.D. Light, nutrients and grazing interact to determine stream diatom community composition and functional group structure: Diatom responses to light, nutrients and grazing. Freshw. Biol. 2011, 56, 264–278. [Google Scholar] [CrossRef]
Code | Karst Pond | Altitude [m] | Gauß-Krüger Coordinates | Precipitation per Year [mm] | |
---|---|---|---|---|---|
Y | X | ||||
POK1 | Pokljuka 1 | 1201 | 425202 | 134889 | 2200 |
POK2 | Pokljuka 2 | 1302 | 424023 | 133737 | 2200 |
JEL1 | Jelovica 1 | 1129 | 431399 | 125787 | 1900 |
JEL2 | Jelovica 2 | 1138 | 430695 | 127923 | 1900 |
KRV1 | Krvavec 1 | 1724 | 464378 | 128300 | 1650 |
Krvavec 2 | 1509 | 463564 | 128355 | 1600 | |
KRV3 | Krvavec 3 | 1445 | 464227 | 127589 | 1600 |
RAT1 | Ratitovec 1 | 1577 | 430192 | 122130 | 2100 |
RAT2 | Ratitovec 2 | 1620 | 430104 | 121849 | 2100 |
Velika planina 1 | 1434 | 475035 | 128689 | 1700 | |
Velika planina 2 | 1481 | 474750 | 128275 | 1700 | |
VEL3 | Velika planina 3 | 1454 | 474958 | 128408 | 1700 |
MEN1 | Menina 1 | 1318 | 488084 | 122280 | 1250 |
MEN2 | Menina 2 | 1403 | 487335 | 123639 | 1500 |
Menina 3 | 1360 | 487473 | 123194 | 1500 | |
MEN4 | Menina 4 | 1419 | 487053 | 123695 | 1500 |
Species | POK1 | POK2 | JEL1 | JEL2 | KRV1 | KRV3 | RAT1 | RAT2 | VEL3 | MEN1 | MEN2 | MEN4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Achnanthidium minutissimum | 13 | 24 | 35 | |||||||||
Achnanthidium pyrenaicum | 13 | 38 | 18 | |||||||||
Craticula accomoda | 16 | |||||||||||
Eucoconeis alpestris | 10 | |||||||||||
Eunotia bilunaris | 19 | |||||||||||
Eunotia tenella | 41 | |||||||||||
Gomphonema angustum | 10 | 13 | ||||||||||
Gomphonema parvulum | 11 | 13 | 19 | |||||||||
Navicula cryptocephala | 26 | 40 | 14 | 19 | 14 | |||||||
Navicula exilis | 45 | |||||||||||
Nitzschia acicularis | 53 | |||||||||||
Nitzschia adamata | 16 | |||||||||||
Nitzschia palea | ||||||||||||
Nitzschia perminuta | 16 | |||||||||||
Nitzschia supralitorea | 19 | |||||||||||
Pinnularia interrupta | 36 | |||||||||||
Sellaphora pseudopupula | 10 | |||||||||||
Sellaphora pupula | 28 | 17 | 10 | |||||||||
Tabellaria flocculosa | 15 | |||||||||||
Dominance index | 53.3 | 77.3 | 27.5 | 52.5 | 71.5 | 32.4 | 61.3 | 62.7 | 23.1 | 34.9 | 53 | 32.6 |
POK1 | POK2 | JEL1 | JEL2 | KRV1 | KRV3 | RAT1 | RAT2 | VEL3 | MEN1 | MEN2 | MEN4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.29 | 0.44 | 0.46 | 0.23 | 0.30 | 0.26 | 0.40 | 0.62 | 0.43 | 0.47 | 0.44 | POK1 | |
0.13 | 0.11 | 0 | 0 | 0.06 | 0.05 | 0.23 | 0.18 | 0 | 0 | POK2 | ||
0.33 | 0.25 | 0.27 | 0.24 | 0.41 | 0.44 | 0.32 | 0.40 | 0.31 | JEL1 | |||
0.31 | 0.49 | 0.29 | 0.56 | 0.37 | 0.27 | 0.46 | 0.29 | JEL2 | ||||
0.22 | 0.27 | 0.26 | 0.15 | 0.20 | 0.39 | 0.33 | KRV1 | |||||
0.26 | 0.38 | 0.29 | 0.25 | 0.40 | 0.31 | KRV3 | ||||||
0.39 | 0.34 | 0.19 | 0.30 | 0.31 | RAT1 | |||||||
0.36 | 0.28 | 0.52 | 0.39 | RAT2 | ||||||||
0.55 | 0.52 | 0.44 | VEL3 | |||||||||
0.37 | 0.48 | MEN1 | ||||||||||
0.55 | MEN2 |
Variable | P | % TVE |
---|---|---|
NO3-N | 0.064 | 10.0 |
NH4-N | 0.072 | 9.6 |
No. of Diatom Species | Margalef Index | |
---|---|---|
altitude [m] | n.s. | −0.431 |
O₂ saturation [%] | 0.531 * | 0.543 * |
NH4-N [mg/L] | −0.481 * | −0.492 * |
SW_I h.taxa macoinvertebrates | −0.481 * | −0.492 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novak, K.; Zelnik, I. Relations between Benthic Diatom Community and Characteristics of Karst Ponds in the Alpine Region of Slovenia. Diversity 2021, 13, 531. https://doi.org/10.3390/d13110531
Novak K, Zelnik I. Relations between Benthic Diatom Community and Characteristics of Karst Ponds in the Alpine Region of Slovenia. Diversity. 2021; 13(11):531. https://doi.org/10.3390/d13110531
Chicago/Turabian StyleNovak, Katarina, and Igor Zelnik. 2021. "Relations between Benthic Diatom Community and Characteristics of Karst Ponds in the Alpine Region of Slovenia" Diversity 13, no. 11: 531. https://doi.org/10.3390/d13110531
APA StyleNovak, K., & Zelnik, I. (2021). Relations between Benthic Diatom Community and Characteristics of Karst Ponds in the Alpine Region of Slovenia. Diversity, 13(11), 531. https://doi.org/10.3390/d13110531