Ecotone Dynamics and Stability from Soil Scientific Point of View
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Processing
2.2. Chemical Analysis
- Maximum capillary water capacity (ΘMKK)
- ΘMKK = mMKK − md/V ΘMKK—maximum capillary water capacity (%)
- mMKK—weight of the artificially saturated sample after 2 hours of draining off moisture (g)
- md—weight of the sample dried to the constant moisture (g)
- V—sample volume in Kopecky’s soil sample ring (cm3)
- Minimum air capacity (AMKK)
- Bulk density
- ρd = c − a/V
- ρd—bulk density (g·cm3)
- c—weight of Kopecky’s ring with lids and soil sample dried to constant weight (g)
- a—weight of Kopecky’s soil sample ring with lids (g)
- V—volume of the Kopecky’s soil sample ring (cm3)
- Specific weight
- ρs = m1/(m1 + m2) − m3
- ρs—specific weight (g·cm3)
- m1—weight of soil sample dried to constant weight (g)
- m2—weight of pycnometer with distilled water (g)
- m3—weight of pycnometer with the sample after boiling and distilled water (g)
- Porosity
- P = ρs − ρd/ρs × 100
- P—porosity (%)
- ρs—specific weight (g·cm3)
- ρd—bulk density (g·cm3)
- Minimum air capacity
- AMKK = P − ΘMKK
- AMKK—minimum air capacity (%)
- P—porosity (%)
- ΘMKK—maximum capillary water capacity (%)
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Gosz, J.R. Fundamental ecological characteristics of landscape boundaries. In Ecotones; Springer: Boston, MA, USA, 1991; pp. 8–30. [Google Scholar]
- Hennenberg, K.J.; Goetze, D.; Kouamé, L.; Orthmann, B.; Porembski, S. Border and ecotone detection by vegetation composition along forest-savanna transects in Ivory Coast. J. Veg. Sci. 2005, 16, 301–310. [Google Scholar] [CrossRef]
- Van der Maarel, E. Ecotones and ecoclines are different. J. Veg. Sci. 1990, 1, 135–138. [Google Scholar] [CrossRef]
- Walker, S.; Wilson, J.B.; Steel, J.B.; Rapson, G.L.; Smith, B.; King, W.M.; Cottam, Y.H. Properties of ecotones: Evidence from five ecotones objectively determined from a coastal vegetation gradient. J. Veg. Sci. 2003, 14, 579–590. [Google Scholar] [CrossRef] [Green Version]
- Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology; Courier Corporation: North Chelmsford, MA, USA, 1994. [Google Scholar]
- Kohli, A.; Schmerbeck, J. Soil properties in forest-grassland ecotone: The case of Shola-grasslands in the Palni Hills. In Land-use Related Biodiversity in India; p. 14. Available online: http://www.palanihills.net/uploads/1/7/1/3/17138260/kohli_etal_2010_soil_of_shola-grasslands_in_palni_hills.pdf (accessed on 10 March 2019).
- Murphy, S. Soil Properties of Forest-Grassland Ecotones in Southwest Yukon. B.Sc. Thesis, Queen’s University, Kingston, ON, Canada, 2012. [Google Scholar]
- Cetin, M.; Zeren, I.; Sevik, H.; Cakir, C.; Akpinar, H. A study on the determination of the natural park’s sustainable tourism potential. Environ. Monit. Assess. 2018, 190, 167. [Google Scholar] [CrossRef] [PubMed]
- Honnay, O.; Jacquemyn, H.; Bossuyt, B.; Hermy, M. Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytol. 2005, 166, 723–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossuyt, B.; Hermy, M.; Deckers, J. Migration of herbaceous plant species across ancient-recent forest ecotones in central Belgium. J. Ecol. 1999, 87, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, D.W. Ecosystem management—A needs driven, resource-use philosophy. For. Chron. 1997, 73, 560–564. [Google Scholar] [CrossRef]
- Zeithaml, J.; Pižl, V.; Sklenička, P. Earthworm assemblages in an ecotone between forest and arable field and their relations with soil properties. Pesqui. Agropecuária Bras. 2009, 44, 922–926. [Google Scholar] [CrossRef] [Green Version]
- Yadav, G.; Datta, R.; Imran Pathan, S.; Lal, R.; Meena, R.; Babu, S.; Das, A.; Bhowmik, S.; Datta, M.; Saha, P. Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice (Oryza sativa L.)–Rice System in North Eastern Region of India. Sustainability 2017, 9, 1816. [Google Scholar] [CrossRef]
- Davidson, E.A. Spatial covariation of soil organic carbon, clay content, and drainage class at a regional scale. Landsc. Ecol. 1995, 10, 349–362. [Google Scholar] [CrossRef]
- Goderya, F.S. Field scale variations in soil properties for spatially variable control: A review. J. Soil Contam. 1998, 7, 243–264. [Google Scholar] [CrossRef]
- Groffman, P.M.; Hanson, G.C.; Kiviat, E.; Stevens, G. Variation in microbial biomass and activity in four different wetland types. Soil Sci. Soc. Am. J. 1996, 60, 622–629. [Google Scholar] [CrossRef]
- Johnson, L.C.; Shaver, G.R.; Cades, D.H.; Rastetter, E.; Nadelhoffer, K.; Giblin, A.; Laundre, J.; Stanley, A. Plant carbon–nutrient interactions control CO2 exchange in Alaskan wet sedge tundra ecosystems. Ecology 2000, 81, 453–469. [Google Scholar]
- Sinowski, W.; Auerswald, K. Using relief parameters in a discriminant analysis to stratify geological areas with different spatial variability of soil properties. Geoderma 1999, 89, 113–128. [Google Scholar] [CrossRef]
- Molaei, A.; Lakzian, A.; Datta, R.; Haghnia, G.; Astaraei, A.; Rasouli-Sadaghiani, M.; Ceccherini, M.T. Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities. Int. Agrophys. 2017, 31, 499–505. [Google Scholar] [CrossRef] [Green Version]
- Molaei, A.; Lakzian, A.; Haghnia, G.; Astaraei, A.; Rasouli-Sadaghiani, M.; Ceccherini, M.T.; Datta, R. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study. PLoS ONE 2017, 12, e0180663. [Google Scholar] [CrossRef] [PubMed]
- Kirschbaum, M.U. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 1995, 27, 753–760. [Google Scholar] [CrossRef]
- Datta, R.; Kelkar, A.; Baraniya, D.; Molaei, A.; Moulick, A.; Meena, R.; Formanek, P. Enzymatic degradation of lignin in soil: A review. Sustainability 2017, 9, 1163. [Google Scholar] [CrossRef]
- Van Cleve, K.; Yarie, J. Interaction of temperature, moisture, and soil chemistry in controlling nutrient cycling and ecosystem development in the taiga of Alaska. In Forest Ecosystems in the Alaskan Taiga; Springer: New York, NY, USA, 1986; pp. 160–189. [Google Scholar]
- Voroney, R.P. The soil habitat. In Soil Microbiology, Ecology and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2007; pp. 25–49. [Google Scholar]
- Breshears, D.D.; Barnes, F.J. Interrelationships between plant functional types and soil moisture heterogeneity for semiarid landscapes within the grassland/forest continuum: A unified conceptual model. Landsc. Ecol. 1999, 14, 465–478. [Google Scholar] [CrossRef]
- Datta, R.; Anand, S.; Moulick, A.; Baraniya, D.; Pathan, S.I.; Rejsek, K.; Vranova, V.; Sharma, M.; Sharma, D.; Kelkar, A.; et al. How enzymes are adsorbed on soil solid phase and factors limiting its activity: A Review. Int. Agrophys. 2017, 31, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Palmer, A. Inceptisols. In Encyclopedia of Soils in the Environment, Reference Module in Earth Systems and Environmental Sciences; 2005; pp. 248–254. Available online: https://doi.org/10.1016/B0-12-348530-4/00027-8 (accessed on 3 March 2019).
- Datta, R.; Vranová, V.; Pavelka, M.; Rejšek, K.; Formánek, P. Effect of soil sieving on respiration induced by low-molecular-weight substrates. Int. Agrophys. 2014, 28, 119–124. [Google Scholar] [CrossRef] [Green Version]
- ISO 10390:2005. Soil Quality—Determination of pH. 2005. Available online: https://www.iso.org/standard/40879.html (accessed on 10 March 2019).
- Winters, A.; Harland, M.B. Preparation of Soil Samples for Pipette Analysis. 1930. Available online: https://dl.sciencesocieties.org/publications/aj/abstracts/22/9/AJ0220090771?access=0&view=pdf (accessed on 15 February 2019).
- Folegatti, M.V.; do Brasil, R.P.C.; Blanco, F.F. Sampling equipament for soil bulk density determination tested in a Kandiudalfic Eutrudox and a Typic Hapludox. Sci. Agric. 2001, 58, 833–838. [Google Scholar] [CrossRef]
- Marfo, T.D.; Resjek, K.; Vranova, V. Spatial variations in soil properties across ecotones: A short review. Bull. Geogr. Phys. Geogr. Ser. 2018, 14, 71–77. [Google Scholar] [CrossRef]
- Munroe, J.S. Physical, chemical, and thermal properties of soils across a forest-meadow ecotone in the Uinta Mountains, Northeastern Utah, USA. Arct. Antarct. Alp. Res. 2012, 44, 95–106. [Google Scholar] [CrossRef]
- Rejšek, K. Forest pedology–exercises. Skriptum. Mzlu V Brně 1999. Available online: https://www.worldcat.org/title/lesnicka-pedologie-cviceni/oclc/41831909 (accessed on 10 February 2019).
- Rhoades, C.C.; Miller, S.P.; Skinner, D.L. Forest vegetation and soil patterns across glade-forest ecotones in the Knobs region of northeastern Kentucky, USA. Am. Midl. Nat. 2005, 154, 1–11. [Google Scholar] [CrossRef]
Factor | df | Actual Soil Reaction | Potential Soil Reaction | Maximum Capillary Water | Minimum Air Capacity |
---|---|---|---|---|---|
Time | 7 | 4.98 *** | 6.33 *** | 19.29 *** | 41.71 *** |
Site | 2 | 72.30 *** | 246.20 *** | 178.30 *** | 267.60 *** |
Time × Site | 14 | 3.70 *** | 6.40 *** | 5.33 *** | 22.25 *** |
Time | |||||||||
---|---|---|---|---|---|---|---|---|---|
April | May | June | July | August | Sept | Oct | Nov | ||
Actual Soil Reaction | Meadow | 6.49 ± 0.26 | 6.11 ± 0.07 | 5.67 ± 0.1 | 6.38 ± 0.11 | 6.07 ± 0.04 | 6.04 ± 0.16 | 6.39 ± 0.05 | 6.28 ± 0.13 |
Ecotone | 5.18 ± 0.07 | 5.91 ± 0.1 | 5.57 ± 0.06 | 5.49 ± 0.09 | 5.32 ± 0.12 | 5.19 ± 0.04 | 5.21 ± 0.05 | 5.73 ± 0.04 | |
Forest | 5.54 ± 0.26 | 5.34 ± 0.17 | 5.29 ± 0.07 | 5.03 ± 0.11 | 5.39 ± 0.16 | 4.47 ± 0.42 | 5.78 ± 0.15 | 5.54 ± 0.26 | |
Potential Soil Reaction | Meadow | 3.92 ± 0.06 | 3.88 ± 0.13 | 3.96 ± 0.16 | 3.49 ± 0.02 | 3.97 ± 0.13 | 4.12 ± 0.14 | 3.9 ± 0.03 | 4.22 ± 0.11 |
Ecotone | 3.42 ± 0.1 | 3.06 ± 0.03 | 3.1 ± 0.05 | 3.51 ± 0.15 | 3.46 ± 0.13 | 3.06 ± 0.03 | 3.54 ± 0.07 | 3.2 ± 0.05 | |
Forest | 3.39 ± 0.05 | 2.97 ± 0.05 | 3.02 ± 0.06 | 2.86 ± 0.05 | 2.92 ± 0.06 | 2.99 ± 0.07 | 3.2 ± 0.02 | 3.26 ± 0.03 | |
Maximum Capillary Water | Meadow | 33.67 ± 1.13 | 40.16 ± 0.85 | 40 ± 1.02 | 44.39 ± 1.85 | 43.12 ± 1.44 | 35.83 ± 1.21 | 42.68 ± 0.67 | 45.35 ± 1.76 |
Ecotone | 24.35 ± 0.25 | 30.05 ± 0.04 | 24.06 ± 0.5 | 32.59 ± 0.56 | 33.11 ± 0.44 | 29.18 ± 0.2 | 32.36 ± 1.15 | 32.92 ± 0.19 | |
Forest | 28.23 ± 1.53 | 25.06 ± 1.26 | 30.52 ± 1.75 | 36.65 ± 1.31 | 34.62 ± 1.46 | 34.82 ± 1.51 | 28.59 ± 1.1 | 31.47 ± 2.66 | |
Minimum Air Capacity | Meadow | 14.69 ± 1.01 | 12.63 ± 0.78 | 8.1 ± 0.42 | 14.37 ± 0.52 | 9.39 ± 1.76 | 10.64 ± 0.33 | 9.32 ± 0.54 | 6.43 ± 0.98 |
Ecotone | 22.25 ± 0.34 | 25.32 ± 0.49 | 4.14 ± 0.29 | 19.02 ± 0.52 | 19.02 ± 0.16 | 17.32 ± 1.21 | 21.91 ± 0.77 | 24.49 ± 1.57 | |
Forest | 27.52 ± 0.68 | 23.63 ± 1.14 | 18.67 ± 1.24 | 13.22 ± 0.62 | 21.99 ± 2.64 | 15.17 ± 0.76 | 26.58 ± 1.08 | 31.02 ± 1.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marfo, T.D.; Datta, R.; Pathan, S.I.; Vranová, V. Ecotone Dynamics and Stability from Soil Scientific Point of View. Diversity 2019, 11, 53. https://doi.org/10.3390/d11040053
Marfo TD, Datta R, Pathan SI, Vranová V. Ecotone Dynamics and Stability from Soil Scientific Point of View. Diversity. 2019; 11(4):53. https://doi.org/10.3390/d11040053
Chicago/Turabian StyleMarfo, Theodore Danso, Rahul Datta, Shamina Imran Pathan, and Valerie Vranová. 2019. "Ecotone Dynamics and Stability from Soil Scientific Point of View" Diversity 11, no. 4: 53. https://doi.org/10.3390/d11040053
APA StyleMarfo, T. D., Datta, R., Pathan, S. I., & Vranová, V. (2019). Ecotone Dynamics and Stability from Soil Scientific Point of View. Diversity, 11(4), 53. https://doi.org/10.3390/d11040053