Crystal Structure of 3-(Anthracen-2′-yl)-ortho-carborane
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods
3.2. Synthesis of 3-(Anthracen-2′-yl)-ortho-carborane
3.3. Single Crystal X-Ray Diffraction Study
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ochi, J.; Tanaka, K.; Chujo, Y. Recent progress in the development of solid-state luminescent o-carboranes with stimuli responsivity. Angew. Chem. Int. Ed. 2020, 59, 9841–9855. [Google Scholar] [CrossRef]
- Tanaka, K.; Gon, M.; Ito, S.; Ochi, J.; Chujo, Y. Recent progresses in the mechanistic studies of aggregation-induced emission-active boron complexes and clusters. Coord. Chem. Rev. 2022, 472, 214779. [Google Scholar] [CrossRef]
- Ran, Z.; Zhao, M.; Shi, J.; Ji, L. Luminescent o-carboranyl-containing molecules: A promising platform for stimuli-responsive smart materials. Dyes Pigment. 2025, 232, 112484. [Google Scholar] [CrossRef]
- Viñas, C.; Barberà, G.; Oliva, J.M.; Teixidor, F.; Welch, A.J.; Rosair, G.M. Are halocarboranes suitable for substitution reactions? The case for 3-I-1,2-closo-C2B10H11: Molecular orbital calculations, aryldehalogenation reactions, 11B NMR interpretation of closo-carboranes, and molecular structures of 1-Ph-3-Br-1,2-closo-C2B10H10 and 3-Ph-1,2-closo-C2B10H11. Inorg. Chem. 2001, 40, 6555–6562. [Google Scholar] [CrossRef]
- Zhao, D.; Xie, Z. Visible-light-promoted photocatalytic B−C coupling via a boron-centered carboranyl radical: Facile synthesis of B(3)-arylated o-carboranes. Angew. Chem. Int. Ed. 2016, 55, 3166–3170. [Google Scholar] [CrossRef]
- Ochi, J.; Tanaka, K.; Chujo, Y. Investigation of the substitution site effect on o-carborane-based chromophores by anthracene introduction at the B (3) position. Bull. Chem. Soc. Jpn. 2023, 96, 98–102. [Google Scholar] [CrossRef]
- Shmal’ko, A.V.; Anufriev, S.A.; Suponitsky, K.Y.; Antoshkina, E.P.; Sivaev, I.B.; Bregadze, V.I. Synthesis of B-substituted anthracenyl and pyrenyl derivatives of ortho-carborane. Inorganics 2025, 13, 138. [Google Scholar] [CrossRef]
- Mattejata, M.; Ménard, G. Selective heterogeneous capture and release of actinides using carborane-functionalized electrodes. Chem. Commun. 2023, 59, 9710–9713. [Google Scholar] [CrossRef] [PubMed]
- Naito, H.; Nishino, K.; Morisaki, Y.; Tanaka, K.; Chujo, Y. Solid-state emission of the anthracene-o-carborane dyad from the twisted-intramolecular charge transfer in the crystalline state. Angew. Chem. Int. Ed. 2016, 56, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Ryu, C.H.; Lee, S.H.; Yi, S.; Hong, J.H.; Im, S.; Lee, K.M. Naphthyl- and quinoline-appended o-carboranyl luminophores: Intramolecular charge transfer-based radiative decay controlled by structural geometry around C-C bond axis. Eur. J. Inorg. Chem. 2021, 2021, 4875–4881. [Google Scholar] [CrossRef]
- Im, S.; Ryu, C.H.; Kim, M.; You, D.K.; Yi, S.; Lee, W.; Lee, K.M. Effects of molecular geometry on the efficiency of intramolecular charge transfer-based luminescence in o-carboranyl-substituted 1H-phenanthro[9,10-d]imidazoles. Inorg. Chem. Front. 2022, 9, 501–513. [Google Scholar] [CrossRef]
- Brain, P.T.; Cowie, J.; Donohoe, D.J.; Hnyk, D.; Rankin, D.W.H.; Reed, D.; Reid, B.D.; Robertson, H.E.; Welch, A.J.; Hofmann, M.; et al. 1-Phenyl-1,2-dicarba-closo-dodecaborane, 1-Ph-1,2-closo-C2B10H11. Synthesis, characterization, and structure as determined in the gas phase by electron diffraction, in the crystalline phase at 199 K by X-ray diffraction, and by ab initio computations. Inorg. Chem. 1996, 35, 1701–1708. [Google Scholar] [CrossRef]
- Glukhov, I.V.; Antipin, M.Y.; Lyssenko, K.A. C−C bond variation in the 1-phenyl-o-carborane: Steric versus electronic effects. Eur. J. Inorg. Chem. 2004, 2004, 1379–1384. [Google Scholar] [CrossRef]
- Thomas, R.L.; Rosair, G.M.; Welch, A.J. A new crystalline form of 1-phenyl-1,2-dicarba-closo-dodecaborane(12). Acta Cryst. C 1996, 52, 1024–1026. [Google Scholar] [CrossRef]
- Glukhov, I.V.; Lyssenko, K.A.; Korlyukov, A.A.; Antipin, M.Y. Nature of weak inter- and intramolecular contacts in crystals 2. Character of electron delocalization and the nature of X-H...H-X (X = C, B) contacts in the crystal of 1-phenyl-o-carborane. Russ. Chem. Bull. 2005, 54, 547–559. [Google Scholar] [CrossRef]
- Reed, D.; Welch, A.J.; Cowie, J.; Donohoe, D.J.; Parkinson, J.A. Application of the NOE experiment to the analysis of boron hydride derivatives: Confirming the assignments of the pseudocloso-complex [1,2-Ph2-3-{Cp*}-3,1,2-IrC2B9H9] (Cp*=η5-C5Me5) and the closo-compounds 1-Ph-1,2-C2B10H11 and 1-Ph-2-Me-1,2-C2B10H10. Inorg. Chim. Acta 1999, 289, 125–133. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Yan, L.; Lu, C.; Yan, H. A “flexible” carborane-cored luminogen: Variable emission behaviours in aggregates. Dalton Trans. 2021, 50, 8029–8035. [Google Scholar] [CrossRef] [PubMed]
- Hawthorne, M.F.; Wegner, P.A. Reconstruction of the 1,2-dicarbaclovododecaborane(12) structure by boron-atom insertion with (3)-1,2-dicarbollide ions. J. Am. Chem. Soc. 1968, 90, 896–901. [Google Scholar] [CrossRef]
- Xu, T.-T.; Cao, K.; Zhang, C.-Y.; Wu, J.; Ding, L.-F.; Yang, J. Old key opens the lock in carborane: The in situ NHC-palladium catalytic system for selective arylation of B(3,6)-H bonds of o-carboranes via B-H activation. Org. Lett. 2019, 21, 9276–9279. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Shmal’ko, A.V.; Suponitsky, K.Y.; Sivaev, I.B. Synthesis of 3-aryl-ortho-carboranes with sensitive functional groups. Molecules 2021, 26, 7297. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Sivaev, I.B.; Suponitsky, K.Y.; Bregadze, V.I. Practical synthesis of 9-methylthio-7,8-nido-carborane [9-MeS-7,8-C2B9H11]−. Some evidences of BH···X hydride-halogen bonds in 9- XCH2(Me)S-7,8-C2B9H11 (X = Cl, Br, I). J. Organomet. Chem. 2017, 849–850, 315–323. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Erokhina, S.A.; Suponitsky, K.Y.; Godovikov, I.A.; Filippov, O.A.; Fabrizi de Biani, F.; Corsini, M.; Chizhov, A.O.; Sivaev, I.B. Methylsulfanyl-stabilized rotamers of cobalt bis(dicarbollide). Eur. J. Inorg. Chem. 2017, 2017, 4444–4451. [Google Scholar] [CrossRef]
- Suponitsky, K.Y.; Masunov, A.E.; Antipin, M.Y. Conformational dependence of the first molecular hyperpolarizability in the computational design of nonlinear optical materials for optical switching. Mendeleev Commun. 2008, 18, 265–267. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- Keith, T.A. AIMAll, Version 15.05.18; TK Gristmill Software: Overland Park, KS, USA, 2015.
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Lyssenko, K.A. Analysis of supramolecular architectures: Beyond molecular packing diagrams. Mendeleev Commun. 2012, 22, 1–7. [Google Scholar] [CrossRef]
- Sheremetev, A.B.; Aleksandrova, N.S.; Semyakin, S.S.; Suponitsky, K.Y.; Lempert, D.B. Synthesis and characterization of 3-(5-(fluorodinitromethyl)-1H-1,2,4-triazol-3-yl)-4-nitrofurazan: A novel promising energetic component of boron-based fuels for rocket ramjet engines. Chem. Asian J. 2019, 14, 4255–4261. [Google Scholar] [CrossRef] [PubMed]
- Suponitsky, K.Y.; Anisimov, A.A.; Anufriev, S.A.; Sivaev, I.B.; Bregadze, V.I. 1,12-Diiodo-ortho-carborane: A classic textbook example of the dihalogen bond. Crystals 2021, 11, 396. [Google Scholar] [CrossRef]
- Suponitsky, K.Y.; Anufriev, S.A.; Sivaev, I.B. How the position of substitution affects intermolecular bonding in halogen derivatives of carboranes: Crystal structures of 1,2,3- and 8,9,12-triiodo- and 8,9,12-tribromo-ortho-carboranes. Molecules 2023, 28, 875. [Google Scholar] [CrossRef]
- Zhao, D.; Xie, Z. [3-N2-o-C2B10H11][BF4]: A useful synthon for multiple cage boron functionalizations of o-carborane. Chem. Sci. 2016, 7, 5635–5639. [Google Scholar] [CrossRef] [PubMed]
- Itatani, H.; Bailar, J.C. Homogenous catalysis in the reactions of olefinic substances. V. Hydrogenation of soybean oil methyl ester with triphenylphosphine and triphenylarsine palladium catalysts. J. Am. Oil Chem. Soc. 1967, 44, 147–151. [Google Scholar] [CrossRef]
- Armarego, W.L.F.; Chai, C.L.L. Purification of Laboratory Chemicals, 7th ed.; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- APEX2 and SAINT; Bruker AXS Inc.: Madison, WI, USA, 2014.
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suponitsky, K.Y.; Shmal’ko, A.V.; Anufriev, S.A.; Sivaev, I.B. Crystal Structure of 3-(Anthracen-2′-yl)-ortho-carborane. Molbank 2025, 2025, M2071. https://doi.org/10.3390/M2071
Suponitsky KY, Shmal’ko AV, Anufriev SA, Sivaev IB. Crystal Structure of 3-(Anthracen-2′-yl)-ortho-carborane. Molbank. 2025; 2025(4):M2071. https://doi.org/10.3390/M2071
Chicago/Turabian StyleSuponitsky, Kyrill Yu., Akim V. Shmal’ko, Sergey A. Anufriev, and Igor B. Sivaev. 2025. "Crystal Structure of 3-(Anthracen-2′-yl)-ortho-carborane" Molbank 2025, no. 4: M2071. https://doi.org/10.3390/M2071
APA StyleSuponitsky, K. Y., Shmal’ko, A. V., Anufriev, S. A., & Sivaev, I. B. (2025). Crystal Structure of 3-(Anthracen-2′-yl)-ortho-carborane. Molbank, 2025(4), M2071. https://doi.org/10.3390/M2071