Crystal Structure and Hirshfeld Surface Analysis of Hexakis(acetoxymethyl)benzene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Structure Elucidation
2.3. Hirshfeld Surface Analysis
3. Materials and Methods
3.1. Synthesis
3.2. Crystallization and X-Ray Structure Determination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MacNicol, D.D.; Hardy, A.D.U.; Wilson, D.R. Crystal and molecular structure of a ‘hexa-host’ inclusion compound. Nature 1977, 266, 611–612. [Google Scholar] [CrossRef]
- MacNicol, D.D.; Wilson, D.R. New Strategy for the Design of Inclusion Compounds: Discovery of the ‘Hexa-hosts’. J. Chem. Soc. Chem. Commun. 1976, 494–495. [Google Scholar] [CrossRef]
- Vögtle, F.; Weber, E. Krakenmoleküle. Angew. Chem. 1974, 86, 896–898. [Google Scholar] [CrossRef]
- Arunachalam, M.; Ahamed, B.N.; Ghosh, P. Binding of Ammonium Hexafluorophosphate and Cation-Induced Isolation of Unusual Conformers of a Hexapodal Receptor. Org. Lett. 2010, 12, 2742–2745. [Google Scholar] [CrossRef]
- Zhao, X.; Li, X.; Ding, W.; Chen, X.; Wu, L.; Huang, Z.; Zhang, Z. Pyrrole-based acyclic hexapodal aldehyde for anion recognition. Tetrahedron 2024, 165, 134170. [Google Scholar] [CrossRef]
- Koch, N.; Seichter, W.; Mazik, M. Hexapodal pyrazole-based receptors: Complexes with ammonium ions and solvent molecules in the solid state. Tetrahedron 2015, 71, 8965–8974. [Google Scholar] [CrossRef]
- Arunachalam, M.; Ghosh, P. Bistripodand Amide Host for Compartmental Recognition of Multiple Oxyanions. Org. Lett. 2010, 12, 328–331. [Google Scholar] [CrossRef]
- Chakraborty, S.; Dutta, R.; Wong, B.M.; Ghosh, P. Anion directed conformational diversities of an arene based hexa-amide receptor and recognition of the [F4(H2O)6]4− cluster. RSC Adv. 2014, 4, 62689–62693. [Google Scholar] [CrossRef]
- Arunachalam, M.; Ghosh, P. Encapsulation of [F4(H2O)10]4− in a dimeric assembly of an unidirectional arene based hexapodal amide receptor. Chem. Commun. 2011, 22, 6269–6271. [Google Scholar] [CrossRef]
- Chakraborty, S.; Arunachalam, M.; Dutta, R.; Ghosh, P. Arene platform based hexa-amide receptors for anion recognition: Single crystal X-ray structural and thermodynamic studies. RSC Adv. 2015, 5, 48060–48070. [Google Scholar] [CrossRef]
- Förster, S.; Seichter, W.; Weber, E. Synthesis and Structures of Three- and Hexa-armed Benzene Derivatives Featuring Lateral Benzoic Ester and Benzoic Acid Functions. Z. Naturforschung B 2011, 66, 939–946. [Google Scholar] [CrossRef]
- Das, D.; Barbour, L.J. Polymorphism of a Hexa-host: Isolation of Four Different Single-Crystal Phases by Melt Crystallization. J. Am. Chem. Soc. 2008, 130, 14032–14033. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Barbour, L.J. Unusual Conformations of a Hexa-Host Molecule in Solvate Inclusion Compounds. Cryst. Growth Des. 2009, 9, 1599–1604. [Google Scholar] [CrossRef]
- Das, D.; Barbour, L.J. Concomitant formation of two different solvates of a hexa-host from a binary mixture of solvents. Chem. Commun. 2008, 5110–5112. [Google Scholar] [CrossRef]
- Gavette, J.V.; Sargent, A.L.; Allen, W.E. Hydrogen Bonding vs Steric Gearing in a Hexasubstituted Benzene. J. Org. Chem. 2008, 73, 3582–3584. [Google Scholar] [CrossRef]
- Desiraju, G.R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Steiner, T. Unrolling the hydrogen bond properties of C–H···O interactions. Chem. Commun. 1997, 727–734. [Google Scholar] [CrossRef]
- Steiner, T. Effect of acceptor strength on C–H···O hydrogen bond lengths as revealed by and quantified from crystallographic data. J. Chem. Soc. Chem. Commun. 1994, 2341–2342. [Google Scholar] [CrossRef]
- Steiner, T.; Desiraju, G.R. Distinction between the weak hydrogen bond and the van der Waals interaction. Chem. Commun. 1998, 891–892. [Google Scholar] [CrossRef]
- Desiraju, G.R. C–H···O and other weak hydrogen bonds. From crystal engineering to virtual screening. Chem. Commun. 2005, 2995–3001. [Google Scholar] [CrossRef]
- Mazik, M.; Bläser, D.; Boese, R. Intermolecular CH···N/CH···O hydrogen bonds in the crystal structures of α,β-unsaturated ketones carrying a terminal pyridine subunit. Tetrahedron 2001, 57, 5791–5797. [Google Scholar] [CrossRef]
- Mazik, M.; Hartmann, A.; Jones, P.G. Hydrogen and Halogen Bonding in the Crystal Structure of a 1,3,5-Substituted 2,4,6-Triethylbenzene Consisting of Three Phenanthroline Units. Eur. J. Org. Chem. 2010, 2010, 458–463. [Google Scholar] [CrossRef]
- Castellano, R.K. Progress Toward Understanding the Nature and Function of C–H···O Interactions. Curr. Org. Chem. 2004, 8, 845–865. [Google Scholar] [CrossRef]
- Horowitz, S.; Trievel, R.C. Carbon-Oxygen Hydrogen Bonding in Biological Structure and Function. J. Biol. Chem. 2012, 287, 41576–41582. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Tan, Y.; Jones, L.O.; Song, B.; Guo, Q.-H.; Zhang, L.; Qiu, Y.; Feng, Y.; Chen, X.-Y.; Schatz, G.C.; et al. PCage: Fluorescent Molecular Temples for Binding Sugars in Water. J. Am. Chem. Soc. 2021, 143, 15688–15700. [Google Scholar] [CrossRef] [PubMed]
- Itoh, Y.; Nakashima, Y.; Tsukamoto, S.; Kurohara, T.; Suzuki, M.; Sakae, Y.; Oda, M.; Okamoto, Y.; Suzuki, T. N+–C–H···O Hydrogen bonds in protein-ligand complexes. Sci. Rep. 2019, 9, 767. [Google Scholar] [CrossRef]
- Scheiner, S. Weak H-bonds. Comparisons of CH···O to NH···O in proteins and PH···N to direct P···N interactions. Phys. Chem. Chem. Phys. 2011, 13, 13860–13872. [Google Scholar] [CrossRef]
- Backer, H.J. L’hexa-hydroxyméthyl-benzène et ses dérivés (composés planradiaires I). Recl. Trav. Chim. Pays-Bas 1935, 54, 833–837. [Google Scholar] [CrossRef]
- Závada, J.; Pánková, M.; Holý, P.; Tichý, M. A Facile Synthesis of Hexakis(bromomethyl)benzene from Mesitylene. Synthesis 1994, 1994, 1132. [Google Scholar] [CrossRef]
- Biali, S.E.; Mislow, K. Barrier to Internal Rotation in l,2-Bis(bromochloromethyl)-3,4,5,6-tetraisopropylbenzene. J. Org. Chem. 1988, 53, 1318–1320. [Google Scholar] [CrossRef]
- Biali, S.E.; Gutiérrez, A.; Mislow, K. Achiral Hexaisopropylbenzene Isotopomers: Analogues of the Achiral Trihydroxyglutaric Acid Diastereomers. J. Org. Chem. 1988, 53, 1316–1318. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Cryst. 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 3814–3816. [Google Scholar] [CrossRef]
- Venkatesan, P.; Thamotharan, S.; Ilangovan, A.; Liang, H.; Sundius, T. Crystal structure, Hirshfeld surfaces and DFT computation of NLO active (2E)-2-(ethoxycarbonyl)-3-[(1-methoxy-1-oxo-3-phenylpropan-2-yl)amino]prop-2-enoic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 153, 625–636. [Google Scholar] [CrossRef]
- APEX2 and SAINT. Bruker AXS Inc.: Madison, WI, USA, 2005.
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 2015, 48, 3–10. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stapf, M.; Seichter, W.; Mazik, M. Crystal Structure and Hirshfeld Surface Analysis of Hexakis(acetoxymethyl)benzene. Molbank 2025, 2025, M2008. https://doi.org/10.3390/M2008
Stapf M, Seichter W, Mazik M. Crystal Structure and Hirshfeld Surface Analysis of Hexakis(acetoxymethyl)benzene. Molbank. 2025; 2025(2):M2008. https://doi.org/10.3390/M2008
Chicago/Turabian StyleStapf, Manuel, Wilhelm Seichter, and Monika Mazik. 2025. "Crystal Structure and Hirshfeld Surface Analysis of Hexakis(acetoxymethyl)benzene" Molbank 2025, no. 2: M2008. https://doi.org/10.3390/M2008
APA StyleStapf, M., Seichter, W., & Mazik, M. (2025). Crystal Structure and Hirshfeld Surface Analysis of Hexakis(acetoxymethyl)benzene. Molbank, 2025(2), M2008. https://doi.org/10.3390/M2008