Synthesis and Structure of a Coordination Polymer of Ni(II) with 2-(4-Bromophenoxy)acetohydrazide
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Synthesis of 2-(4-Bromophenoxy)acetohydrazide (L)
3.3. Synthesis of [NiCl2L(2-PrOH)]n
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abidov, M. Pharmacological aspects of hydrazides and hydrazide derivatives. Health Promot. Phys. Act. 2017, 2, 9–21. [Google Scholar] [CrossRef]
- Meshcheryakova, S.; Shumadalova, A.; Beylerli, O.; Gareev, I. Synthesis and biological activity of 2-[6-methyl-4-(thietan-3-yloxy)pyrimidin-2-ylthio]acetohydrazide derivatives. ADMET DMPK 2021, 9, 167–176. [Google Scholar] [CrossRef]
- Mali, D.; Amrutkar, S. Virtual Screening, ADMET Analysis, and Synthesis of 2-(1H-benzotriazol-1-yl) N-substituted Acetohydrazide that binds to the Glycoprotein B of Herpes Simplex Virus-I (HSV-I). Anti-Infect. Agents 2023, 21, e170723218776. [Google Scholar] [CrossRef]
- Mangal, M.; Chander, S.; Goel, R.; Sharma, A. Synthesis, spectral and antimicrobial activities of metal complexes with phenyl thiourea and acid hydrazide. J. Cardiovasc. Dis. Res. 2021, 12, 605–615. [Google Scholar]
- Emara, E.; El-Sayed, W.; Khalaf-Allah, A.; Alminderej, F.; Abdel-Monem, Y.; Abd-Rabou, A. Spectral studies, thermal investigations and anticancer activity of some divalent metal complexes derived from 2-(4-bromophenylamino)acetohydrazide ligand. Appl. Organomet. Chem. 2022, 36, e6657. [Google Scholar] [CrossRef]
- Ashma, A.; Yahya, S.; Subramani, A.; Tamilarasan, R.; Sasikumar, G.; Ali, S.J.A.; Al-Lohedan, H.A.; Karnan, M. Synthesis of new nicotinic acid hydrazide metal complexes: Potential anti-cancer drug, supramolecular architecture, antibacterial studies and catalytic properties. J. Mol. Struct. 2022, 1250, 131860. [Google Scholar] [CrossRef]
- Jabeen, M.; Ahmad, S.; Shahid, K.; Sadiq, A.; Rashid, U. Ursolic acid hydrazide based organometallic complexes: Synthesis, characterization, antibacterial, antioxidant, and docking studies. Front. Chem. 2018, 6, 55. [Google Scholar] [CrossRef] [PubMed]
- Parveen, S.; Naseem, H.A.; Ahmad, K.; Shah, H.-U.-R.; Tariq, A.; Muhammad, A.; Rauf, A. Design, synthesis and spectroscopic characterizations of medicinal hydrazide derivatives and metal complexes of malonic ester. Curr. Bioact. Compd. 2023, 19, 31–46. [Google Scholar] [CrossRef]
- Emara, E.M.; Khalaf-Allah, A.S.A.; El-Sawaf, M.A. Efficacy of 2-(p-tolylamino)acetohydrazide and its Co(II), Ni(II) complexes on the shell of Eobania vermiculata under laboratory conditions. Egypt. J. Agric. Res. 2023, 101, 1019–1026. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, J.; Ahmad, F.; Xiao, Y.; Guan, J.; Shu, T.; Zhang, X. Bimetallic Coordination Polymers: Synthesis and Applications in Biosensing and Biomedicine. Biosensors 2024, 14, 117. [Google Scholar] [CrossRef]
- Siddiqi, Z.; Khalid, M.; Kumar, S.; Shahid, M.; Noor, S. Antimicrobial and SOD activities of novel transition metal complexes of pyridine-2,6-dicarboxylic acid containing 4-picoline as auxiliary ligand. Eur. J. Med. Chem. 2010, 45, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Suku, S.; Ravindran, R. Synthesis, characterization and antimicrobial studies of 1D hetero-bimetallic coordination polymers of pyridine-2,6-dicarboxylic acid with iron and alkaline earth metals. J. Mol. Struct. 2022, 1252, 132083. [Google Scholar] [CrossRef]
- Nesterkina, M.; Barbalat, D.A.; Kravchenko, I. Design, synthesis and pharmacological profile of (−)-verbenone hydrazones. Open Chem. 2020, 18, 943–950. [Google Scholar] [CrossRef]
- Seifullina, I.; Martsinko, E.; Chebanenko, E.; Dyakonenko, V.; Shishkina, S.; Pirozhok, O. Structure of the {[Cu2Ge(μ-Cit)2(μ-INH)2]·4H2O}n Coordination Polymer, where H4Cit is Citric Acid, INH is Isonicotinic Acid Hydrazide. J. Struct. Chem. 2018, 59, 154–159. [Google Scholar] [CrossRef]
- Geary, W.J. The Use of Conductivity Measurements in Organic Solvents For The Characterisation Of Coordination Compounds. Coord. Chem. Rev. 1971, 7, 81–122. [Google Scholar] [CrossRef]
- Khedr, M.; Saad, F.A. Synthesis, structural characterization and antimicrobial efficiency of sulfadiazine azo-azomethine dyes and their bi-homonuclear uranyl complexes for chemotherapeutic use. Turk. J. Chem. 2015, 39, 267–280. [Google Scholar] [CrossRef]
- Fouad Ibrahim, R.; Shaaban, I.; Ali, T.; Assiri, M.; Shenouda, S. Co(II), Ni(II), Cu(II) and Cd(II)-thiocarbonohydrazone complexes: Spectroscopic, DFT, thermal, and electrical conductivity studies. RSC Adv. 2021, 11, 37726–37743. [Google Scholar] [CrossRef]
- Genc, Z.; Tekin, S.; Sandal, S.; Şekerci, M.; Genc, M. Synthesis and DFT studies of structural and some spectral parameters of nickel(II) complex with 2-(2-hydroxybenzoyl)-N-(1-adamantyl) hydrazine carbothioamide. Res. Chem. Intermed. 2014, 41, 4477–4488. [Google Scholar] [CrossRef]
- Akhtar, T.; Khawar Rauf, M.; Ebihara, M.; Hameed, S. 2-(4-Bromophenoxy)propanohydrazide. Acta Crystallogr. Sect. E Struct. Rep. Online 2009, 65, o441. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Maingot, L.; Elbakali, J.; Dumont, J.; Bosc, D.; Cousaert, N.; Urban, A.; Deglane, G.; Villoutreix, B.; Nagase, H.; Sperandio, O.; et al. Aggrecanase-2 inhibitors based on the acylthiosemicarbazide zinc-binding group. Eur. J. Med. Chem. 2013, 69, 244–261. [Google Scholar] [CrossRef] [PubMed]
- Al-Ostoot, F.H.; Khamees, H.A.; Prasad, N.; Zameer, F.; Khanum, S.A. In-silico docking, synthesis, structure analysis, DFT calculations, energy frameworks, and pharmacological intervention of [1,3,4]-thiadiazoles analogous as XO inhibitor and on multiple molecular inflammatory targets COX and LOX. J. Mol. Struct. 2022, 1270, 133963. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martsynko, О.; Nesterkina, M.; Finik, О.; Tsymbaliuk, K.; Dyakonenko, V.; Shishkina, S.; Kravchenko, I. Synthesis and Structure of a Coordination Polymer of Ni(II) with 2-(4-Bromophenoxy)acetohydrazide. Molbank 2024, 2024, M1819. https://doi.org/10.3390/M1819
Martsynko О, Nesterkina M, Finik О, Tsymbaliuk K, Dyakonenko V, Shishkina S, Kravchenko I. Synthesis and Structure of a Coordination Polymer of Ni(II) with 2-(4-Bromophenoxy)acetohydrazide. Molbank. 2024; 2024(2):M1819. https://doi.org/10.3390/M1819
Chicago/Turabian StyleMartsynko, Оlena, Mariia Nesterkina, Оlena Finik, Kyrylo Tsymbaliuk, Viktoriya Dyakonenko, Svitlana Shishkina, and Iryna Kravchenko. 2024. "Synthesis and Structure of a Coordination Polymer of Ni(II) with 2-(4-Bromophenoxy)acetohydrazide" Molbank 2024, no. 2: M1819. https://doi.org/10.3390/M1819
APA StyleMartsynko, О., Nesterkina, M., Finik, О., Tsymbaliuk, K., Dyakonenko, V., Shishkina, S., & Kravchenko, I. (2024). Synthesis and Structure of a Coordination Polymer of Ni(II) with 2-(4-Bromophenoxy)acetohydrazide. Molbank, 2024(2), M1819. https://doi.org/10.3390/M1819