4,4’-(Thiophene-2,5-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) Iodide
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madaan, P.; Tyagi, V.K. Quaternary Pyridinium Salts: A Review. J. Oleo Sci. 2008, 57, 197–215. [Google Scholar] [CrossRef] [PubMed]
- Sowmiah, S.; Esperança, J.M.S.S.; Rebelo, L.P.N.; Afonso, C.A.M. Pyridinium salts: From synthesis to reactivity and applications. Org. Chem. Front. 2018, 5, 453–493. [Google Scholar] [CrossRef]
- Vereshchagin, A.N.; Frolov, N.A.; Egorova, K.S.; Seitkalieva, M.M.; Ananikov, V.P. Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials. Int. J. Mol. Sci. 2021, 22, 6793. [Google Scholar] [CrossRef] [PubMed]
- Yake, A.; Corder, T.; Moloy, K.; Coope, T.; Taylor, C.; Hung, M.; Peng, S. Fluorinated pyridinium and ammonium cationic surfactants. J. Fluorine Chem. 2016, 187, 46–55. [Google Scholar] [CrossRef]
- Tamilarasan, R.; Ganesan, K.; Subramani, A.; Ali, L.B.; Alam, M.M.; Mohammed, A. Synthesis, Characterization, Pharmacogenomics, and Molecular Simulation of Pyridinium Type of Ionic Liquids and Their Applications. ACS Omega 2023, 8, 4146–4155. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Aparicio, J.L.; Meas, Y.; Chapman, T.W.; Trejo, G.; Ortega, R.; Chainet, E. Electrodeposition of zinc in the presence of quaternary ammonium compounds from alkaline chloride bath. J. Appl. Electrochem. 2015, 45, 67–78. [Google Scholar] [CrossRef]
- Ding, J.; Zheng, C.; Wang, L.; Lu, C.; Zhang, B.; Chen, Y.; Li, M.; Zhai, G.; Zhuang, X. Viologen-inspired functional materials: Synthetic strategies and applications. J. Mater. Chem. A 2019, 7, 23337–23360. [Google Scholar] [CrossRef]
- Madasamy, K.; Velayutham, D.; Suryanarayanan, V.; Kathiresan, M.; Ho, K.-C. Viologen-based electrochromic materials and devices. J. Mater. Chem. C 2019, 7, 4622–4637. [Google Scholar] [CrossRef]
- Pan, M.; Zhou, Q.; Liu, J.; He, Q.; Gong, C.; Tang, Q.; Shen, W. Electrochromic materials containing pyridinium salt and benzoate moieties with dual-colored and long-life performance. Sol. Energy Mater. Sol. Cells 2022, 240, 111712. [Google Scholar] [CrossRef]
- Parashar, R.K.; Kandpal, S.; Pal, N.; Manna, D.; Pal, B.N.; Kumar, R.; Mondal, P.C. Coexistence of Electrochromism and Bipolar Nonvolatile Memory in a Single Viologen. ACS Appl. Mater. Interfaces 2023, 15, 51527–51537. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; He, Y.; Han, J.-M. Helical perylene diimide self-assembly with a redox-active molecular switch applied to humidity sensing. J. Mater. Chem. A 2022, 10, 18363–18373. [Google Scholar] [CrossRef]
- Turgut, K.; Altinisik, S.; Yanalak, G.; Koyuncu, S.; Patir, I.H. Enhanced Photocatalytic Hydrogen Evolution by Star-Shaped Viologen-Sensitized TiO2 Nanoparticles. ACS Appl. Nano Mater. 2023, 6, 20173–20182. [Google Scholar] [CrossRef]
- Ma, T.; Liu, L.; Wang, J.; Lu, Y.; Chen, J. Charge Storage Mechanism and Structural Evolution of Viologen Crystals as the Cathode of Lithium Batteries. Angew. Chem. Int. Ed. 2020, 59, 11533–11539. [Google Scholar] [CrossRef]
- Li, H.; Fan, H.; Hu, B.; Hu, L.; Chang, G.; Song, J. Spatial Structure Regulation: A Rod-Shaped Viologen Enables Long Lifetime in Aqueous Redox Flow Batteries. Angew. Chem. Int. Ed. 2021, 60, 26971–26977. [Google Scholar] [CrossRef] [PubMed]
- Dale, E.J.; Ferris, D.P.; Vermeulen, N.A.; Henkelis, J.J.; Popovs, I.; Juríček, M.; Barnes, J.C.; Schneebeli, S.T.; Stoddart, J.F. Cooperative Reactivity in an Extended-Viologen-Based Cyclophane. J. Am. Chem. Soc. 2016, 138, 3667–3670. [Google Scholar] [CrossRef]
- Zhou, X.-H.; Fan, Y.; Li, W.-X.; Zhang, X.; Liang, R.-R.; Lin, F.; Zhan, T.-G.; Cui, J.; Liu, L.-J.; Zhao, X.; et al. Viologen derivatives with extended π-conjugation structures: From supra-/molecular building blocks to organic porous materials. Chin. Chem. Lett. 2020, 31, 1757–1767. [Google Scholar] [CrossRef]
- Barravecchia, L.; Blanco-Gómez, A.; Neira, I.; Skackauskaite, R.; Vila, A.; Rey-Rico, A.; Peinador, C.; García, M.D. “Vermellogens” and the Development of CB [8]-Based Supramolecular Switches Using pH-Responsive and Non-Toxic Viologen Analogues. J. Am. Chem. Soc. 2022, 144, 19127–19136. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, L.; D’Annibale, A.; Latini, A. 4,4′-([2,2′-Bithiophene]-5,5′-diylbis(ethyne-2,1-diyl))bis(1-methylpyridin-1-ium) Iodide. Molbank 2023, 2023, M1733. [Google Scholar] [CrossRef]
- Iftikhar, R.; Khan, F.Z.; Naeem, N. Recent synthetic strategies of small heterocyclic organic molecules with optoelectronic applications: A review. Mol. Divers. 2023, 28, 271–307. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; He, C.; Liu, C.; Fan, Y.; Zhao, C.; Zhao, C.; Su, W.; Dappe, Y.J.; Yang, L. Oligothiophene molecular wires at graphene-based molecular junctions. Phys. Chem. Chem. Phys. 2021, 23, 21163–21171. [Google Scholar] [CrossRef]
- Chemek, M.; Braiek, M.B.; Mabrouk, A.; Wazzan, N.; Mansour, A.B.; Hafiane, O.; Kamel, A. Optoelectronic properties of a new luminescent-synthesized organic material based on carbazole and thiophene rings for a new generation of OLEDs devices: Experimental investigations and DFT modeling. J. Mater. Sci. Mater. Electron. 2023, 34, 1706. [Google Scholar] [CrossRef]
- Chen, H.; Kan, B.; Wang, P.; Feng, W.; Li, L.; Zhang, S.; Chen, T.; Yang, Y.; Duan, T.; Yao, Z.; et al. Terminally Chlorinated and Thiophene-linked Acceptor-Donor-Acceptor Structured 3D Acceptors with Versatile Processability for High-efficiency Organic Solar Cells. Angew. Chem. Int. Ed. 2023, 62, e2023079. [Google Scholar]
- Haya, G.; Runsewe, D.O.; Otakpor, M.U.; Pohlman, G.E.; Towne, A.; Betancourt, T.; Irvin, J.A. Functionalized Thiophene-Based Aptasensors for the Electrochemical Detection of Mucin-1. ACS Appl. Polym. Mater. 2023, 5, 1208–1218. [Google Scholar] [CrossRef]
- Karak, M.; Barbosa, L.C.A.; Hargaden, G.C. Recent mechanistic developments and next generation catalysts for the Sonogashira coupling reaction. RSC Adv. 2014, 4, 53442–53466. [Google Scholar] [CrossRef]
- Romagnoli, L.; D’Annibale, A.; Blundo, E.; Polimeni, A.; Cassetta, A.; Chita, G.; Panetta, R.; Ciccioli, A.; Latini, A. Synthesis, Structure, and Characterization of 4,4′-(Anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) Bismuth Iodide (C30H22N2)3Bi4I18, an Air, Water, and Thermally Stable 0D Hybrid Perovskite with High Photoluminescence Efficiency. Cryst. Growth Des. 2022, 22, 7426–7433. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, L.; D’Annibale, A.; Latini, A. 4,4′,4″-(Benzene-1,3,5-triyltris(ethyne-2,1-diyl))tris(1-methylpyridin-1-ium) Iodide. Molbank 2023, 2023, M1742. [Google Scholar] [CrossRef]
- Neenan, T.X.; Whitesides, G.M. Synthesis of high carbon materials from acetylenic precursors. Preparation of aromatic monomers bearing multiple ethynyl groups. J. Org. Chem. 1988, 53, 2489–2496. [Google Scholar] [CrossRef]
- Sokolov, A.N.; Friščić, T.; MacGillivray, L.R. Enforced Face-to-Face Stacking of Organic Semiconductor Building Blocks within Hydrogen-Bonded Molecular Cocrystals. J. Am. Chem. Soc. 2006, 128, 2806–2807. [Google Scholar] [CrossRef]
- Lu, P.; Lam, J.W.Y.; Liu, J.; Jim, C.K.W.; Yuan, W.; Chan, C.Y.K.; Xie, N.; Hu, Q.; Cheuk, K.K.L.; Tang, B.Z. Regioselective Alkyne Polyhydrosilylation: Synthesis and Photonic Properties of Poly(silylenevinylene)s. Macromolecules 2011, 44, 5977–5986. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romagnoli, L.; Latini, A.; D’Annibale, A. 4,4’-(Thiophene-2,5-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) Iodide. Molbank 2024, 2024, M1817. https://doi.org/10.3390/M1817
Romagnoli L, Latini A, D’Annibale A. 4,4’-(Thiophene-2,5-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) Iodide. Molbank. 2024; 2024(2):M1817. https://doi.org/10.3390/M1817
Chicago/Turabian StyleRomagnoli, Lorenza, Alessandro Latini, and Andrea D’Annibale. 2024. "4,4’-(Thiophene-2,5-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) Iodide" Molbank 2024, no. 2: M1817. https://doi.org/10.3390/M1817
APA StyleRomagnoli, L., Latini, A., & D’Annibale, A. (2024). 4,4’-(Thiophene-2,5-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) Iodide. Molbank, 2024(2), M1817. https://doi.org/10.3390/M1817