N,N′-Dibutyloxamide
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods
3.2. X-ray Diffraction Analysis
3.3. Synthesis of N,N′-Dibutyloxamide (1)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiao, T.; Xiong, Y.; Feng, Y.; Guo, W.; Zhou, Y.; Zhao, J.; Jiang, T.; Shi, C.; Han, Y. Inhibition of LDH-A by Oxamate Enhances the Efficacy of Anti-PD-1 Treatment in an NSCLC Humanized Mouse Model. Front. Oncol. 2021, 11, 1033. [Google Scholar] [CrossRef] [PubMed]
- Miskimins, W.K.; Ahn, H.J.; Kim, J.Y.; Ryu, S.; Jung, Y.-S. Synergistic Anti-Cancer Effect of Phenformin and Oxamate. PLoS ONE 2014, 9, 85576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogbu, I.M.; Kurtay, G.; Robert, F.; Landais, Y. Oxamic Acids: Useful Precursors of Carbamoyl Radicals. Chem. Commun. 2022, 58, 7593–7607. [Google Scholar] [CrossRef] [PubMed]
- Ogbu, I.M.; Lusseau, J.; Kurtay, G.; Robert, F.; Landais, Y. Urethanes Synthesis from Oxamic Acids under Electrochemical Conditions. Chem. Commun. 2020, 56, 12226–12229. [Google Scholar] [CrossRef] [PubMed]
- Maiore, L.; Aragoni, M.C.; Carcangiu, G.; Cocco, O.; Isaia, F.; Lippolis, V.; Meloni, P.; Murru, A.; Slawin, A.M.Z.; Tuveri, E.; et al. Oxamate Salts as Novel Agents for the Restoration of Marble and Limestone Substrates: Case Study of Ammonium N-Phenyloxamate. New J. Chem. 2016, 40, 2768–2774. [Google Scholar] [CrossRef] [Green Version]
- Pintus, A.; Aragoni, M.C.; Carcangiu, G.; Giacopetti, L.; Isaia, F.; Lippolis, V.; Maiore, L.; Meloni, P.; Arca, M. Density Functional Theory Modelling of Protective Agents for Carbonate Stones: A Case Study of Oxalate and Oxamate Inorganic Salts. New J. Chem. 2018, 42, 11593–11600. [Google Scholar] [CrossRef]
- Maiore, L.; Aragoni, M.C.; Carcangiu, G.; Cocco, O.; Isaia, F.; Lippolis, V.; Meloni, P.; Murru, A.; Tuveri, E.; Arca, M. Synthesis, Characterization and DFT-Modeling of Novel Agents for the Protection and Restoration of Historical Calcareous Stone Substrates. J. Colloid Interface Sci. 2015, 448, 320–330. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Giacopetti, L.; Arca, M.; Carcangiu, G.; Columbu, S.; Gimeno, D.; Isaia, F.; Lippolis, V.; Meloni, P.; Ezquerra, A.N.; et al. Ammonium Monoethyloxalate (AmEtOx): A New Agent for the Conservation of Carbonate Stone Substrates. New J. Chem. 2021, 45, 5327–5339. [Google Scholar] [CrossRef]
- Curreli, F.; Kwon, Y.D.; Zhang, H.; Scacalossi, D.; Belov, D.S.; Tikhonov, A.A.; Andreev, I.A.; Altieri, A.; Kurkin, A.V.; Kwong, P.D.; et al. Structure-Based Design of a Small Molecule CD4-Antagonist with Broad Spectrum Anti-HIV-1 Activity. J. Med. Chem. 2015, 58, 6909–6927. [Google Scholar] [CrossRef] [Green Version]
- Lip, G.Y.H.; Agnelli, G. Edoxaban: A Focused Review of Its Clinical Pharmacology. Eur. Heart J. 2014, 35, 1844–1855. [Google Scholar] [CrossRef] [Green Version]
- Dong, K.; Elangovan, S.; Sang, R.; Spannenberg, A.; Jackstell, R.; Junge, K.; Li, Y.; Beller, M. Selective Catalytic Two-Step Process for Ethylene Glycol from Carbon Monoxide. Nat. Commun. 2016, 7, 12075. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.Q.; Zhou, Q.Q.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Synthesis of Oxalamides by Acceptorless Dehydrogenative Coupling of Ethylene Glycol and Amines and the Reverse Hydrogenation Catalyzed by Ruthenium. Chem. Sci. 2020, 11, 7188–7193. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, Y.; Zhang, L.; Guo, Y.; Ma, D. Oxalic Diamides and Tert-Butoxide: Two Types of Ligands Enabling Practical Access to Alkyl Aryl Ethers via Cu-Catalyzed Coupling Reaction. J. Am. Chem. Soc. 2019, 141, 3541–3549. [Google Scholar] [CrossRef]
- Braun, M.; Frank, W.; Reiss, G.J.; Ganter, C. An N-Heterocyclic Carbene Ligand with an Oxalamide Backbone. Organometallics 2010, 29, 4418–4420. [Google Scholar] [CrossRef]
- Nagarajaprakash, R.; Govindarajan, R.; Manimaran, B. One-Pot Synthesis of Oxamidato-Bridged Hexarhenium Trigonal Prisms Adorned with Ester Functionality. Dalt. Trans. 2015, 44, 11732–11740. [Google Scholar] [CrossRef]
- Nagarajaprakash, R.; Divya, D.; Ramakrishna, B.; Manimaran, B. Synthesis and Spectroscopic and Structural Characterization of Oxamidato-Bridged Rhenium(I) Supramolecular Rectangles with Ester Functionalization. Organometallics 2014, 33, 1367–1373. [Google Scholar] [CrossRef]
- Ramakrishna, B.; Divya, D.; Monisha, P.V.; Manimaran, B. Self-Assembly of Oxamidato-Chelated ReI- and MnI-Based Flexible Dinuclear Horse-Stirrup-Like Metallacycles. Eur. J. Inorg. Chem. 2015, 2015, 5839–5846. [Google Scholar] [CrossRef]
- Ramakrishna, B.; Nagarajaprakash, R.; Manimaran, B. One-Step Synthesis of Oxamidato Bridged Fac-Ru(CO)3 Core Based Dinuclear Compounds: Spectroscopic and Structural Characterisation. J. Organomet. Chem. 2015, 791, 322–327. [Google Scholar] [CrossRef]
- Ramakrishna, B.; Divya, D.; Kumar, U.; Mobin, S.M.; Manimaran, B. Self-Assembly of Mn(I)-Based Oxamidato-Bridged Dinuclear Molecular Tweezers and Tetranuclear Molecular Rectangles. J. Organomet. Chem. 2022, 972, 122371. [Google Scholar] [CrossRef]
- Santana, M.D.; García, G.; Julve, M.; Lloret, F.; Pérez, J.; Liu, M.; Sanz, F.; Cano, J.; López, G. Oxamidate-Bridged Dinuclear Five-Coordinate Nickel(II) Complexes: A Magneto−Structural Study. Inorg. Chem. 2004, 43, 2132–2140. [Google Scholar] [CrossRef]
- Casellato, U.; Guerriero, P.; Tamburini, S.; Vigato, P.A. Metal Complexes with Disubstituted Oxamidic Ligands. Inorg. Chim. Acta 1997, 260, 1–9. [Google Scholar] [CrossRef]
- Mancuso, R.; Raut, D.S.; Della Ca, N.; Fini, F.; Carfagna, C.; Gabriele, B. Catalytic Oxidative Carbonylation of Amino Moieties to Ureas, Oxamides, 2-Oxazolidinones, and Benzoxazolones. ChemSusChem 2015, 8, 2204–2211. [Google Scholar] [CrossRef] [PubMed]
- Meyer, T.; Rabeah, J.; Brückner, A.; Wu, X.F. Visible-Light-Induced Palladium-Catalyzed Dehydrogenative Carbonylation of Amines to Oxalamides. Chem. Eur. J. 2021, 27, 5642–5647. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.M.; Grogan, C.H.; Emmet, R. N,N’-Dialkyloxamides. J. Am. Chem. Soc. 1953, 75, 242. [Google Scholar] [CrossRef]
- Desseyn, H.O.; Perlepes, S.P.; Clou, K.; Blaton, N.; Van Der Veken, B.J.; Dommisse, R.; Hansen, P.E. Theoretical, Structural, Vibrational, NMR, and Thermal Evidence of the Inter- versus Intramolecular Hydrogen Bonding in Oxamides and Thiooxamides. J. Phys. Chem. A 2004, 108, 5175–5182. [Google Scholar] [CrossRef]
- CSD. ConQuest Software, Version 2022.1.0; The Cambridge Crystallographic Data Centre: Cambridge, UK, 2022.
- Etter, M.C. Encoding and Decoding Hydrogen-Bond Patterns of Organic Compounds. Acc. Chem. Res. 1990, 23, 120–126. [Google Scholar] [CrossRef]
- Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. 1995, 34, 1555–1573. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Scott, A.; Dinkelmeyer, B.; Fowler, F.W.; Lauher, J.W. Design of Molecular Solids: Utility of the Hydroxyl Functionality as a Predictable Design Element. New J. Chem. 1998, 22, 129–135. [Google Scholar] [CrossRef]
- Coe, S.; Kane, J.J.; Nguyen, T.L.; Toledo, L.M.; Wininger, E.; Fowler, F.W.; Lauher, J.W. Molecular Symmetry and the Design of Molecular Solids: The Oxalamide Functionality as a Persistent Hydrogen Bonding Unit. J. Am. Chem. Soc. 1997, 119, 86–93. [Google Scholar] [CrossRef]
- Wen, Y.H.; Li, X.M.; Wang, L.; Zhang, S.S. N,N′-Diphenyloxalamide. Acta Crystallogr. Sect. E Struct. Rep. Online 2006, 62, o2185–o2186. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.H.; Xu, L.L.; Li, X.M.; Zhang, S.S. N,N′-Bis(2-Methylphenyl)Oxamide. Acta Crystallogr. Sect. E Struct. Rep. Online 2006, 62, o3276–o3277. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.H.; Zhang, K.; Li, X.M.; Bi, S.; Zhang, S.S. N,N′-Bis(3-Methoxyphenyl)Oxamide. Acta Crystallogr. Sect. E Struct. Rep. Online 2006, 62, o3443–o3444. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Interaction | dD–H (Å) | dH∙∙∙A (Å) | dD∙∙∙A (Å) | αD–H···A (°) | |
---|---|---|---|---|---|
a | N1ii–H1ii∙∙∙O1 | 0.86(2) | 2.12(2) | 2.8727(9) | 146.9(16) |
b | C4iii–H4iii∙∙∙O1 | 0.99 | 2.61 | 3.499(1) | 149.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podda, E.; Dodd, E.; Arca, M.; Aragoni, M.C.; Lippolis, V.; Coles, S.J.; Pintus, A. N,N′-Dibutyloxamide. Molbank 2023, 2023, M1677. https://doi.org/10.3390/M1677
Podda E, Dodd E, Arca M, Aragoni MC, Lippolis V, Coles SJ, Pintus A. N,N′-Dibutyloxamide. Molbank. 2023; 2023(3):M1677. https://doi.org/10.3390/M1677
Chicago/Turabian StylePodda, Enrico, Eleanor Dodd, Massimiliano Arca, M. Carla Aragoni, Vito Lippolis, Simon J. Coles, and Anna Pintus. 2023. "N,N′-Dibutyloxamide" Molbank 2023, no. 3: M1677. https://doi.org/10.3390/M1677
APA StylePodda, E., Dodd, E., Arca, M., Aragoni, M. C., Lippolis, V., Coles, S. J., & Pintus, A. (2023). N,N′-Dibutyloxamide. Molbank, 2023(3), M1677. https://doi.org/10.3390/M1677