Crystal Structures of a Series of Hydroxamic Acids
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dziuk, B.; Zarychta, B.; Ejsmont, K.; Daszkiewicz, Z. Acetylhydroxamic acid. IUCrData 2017, 2, 171390–171395. [Google Scholar] [CrossRef]
- Gupta, S.P.; Sharma, A. Hydroxamic Acids: A Unique Family of Chemicals with Multiple Biological Activities; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–17. [Google Scholar] [CrossRef]
- Syed, Z.; Sonu, K.; Dongre, A.; Sharma, G.; Sogani, M. A review on Hydroxamic Acids: Widespectrum Chemotherapeutic Agents. Int. J. Biol. Biomed. Eng. 2020, 14, 75–88. [Google Scholar] [CrossRef]
- Citarella, A.; Moi, D.; Pinzi, L.; Bonanni, D.; Rastelli, G. Hydroxamic Acid Derivatives: From Synthetic Strategies to Medicinal Chemistry Applications. ACS Omega 2021, 6, 21843–21849. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.E.; Manning, D.L. Spectrophotometric Methods of Establishing Empirical Formulas of Colored Complexes in Solution. J. Am. Chem. Soc. 1950, 72, 4488–4493. [Google Scholar] [CrossRef]
- Schraml, J.; Tkadlecová, M.; Pataridis, S.; Soukupová, L.; Blechta, V.; Roithová, J.; Exner, O. Ring-substituted benzohydroxamic acids:1H,13C and15N NMR spectra and NH-OH proton exchange. Org. Magn. Reson. 2005, 43, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.A.; Coogan, R.A.; Fitzpatrick, N.J.; Glass, W.K.; Abukshima, D.E.; Shiels, L.; Ahlgrén, M.; Smolander, K.; Pakkanen, T.T.; Pakkanen, T.A.; et al. Conformational behaviour of hydroxamic acids: ab initio and structural studies. J. Chem. Soc. Perkin Trans. 2 1996, 2673–2679. [Google Scholar] [CrossRef]
- Brown, D.A.; Glass, W.K.; Mageswaran, R.; Mohammed, S.A. 1H and13C NMR studies of isomerism in hydroxamic acids. Org. Magn. Reson. 1991, 29, 40–45. [Google Scholar] [CrossRef]
- Sow, I.S.; Gelbcke, M.; Meyer, F.; Vandeput, M.; Marloye, M.; Basov, S.; Van Bael, M.J.; Berger, G.; Robeyns, K.; Hermans, S.; et al. Synthesis and biological activity of iron(II), iron(III), nickel(II), copper(II) and zinc(II) complexes of aliphatic hydroxamic acids. J. Coord. Chem. 2023, 76, 76–105. [Google Scholar] [CrossRef]
- Bracher, B.H.; Small, R.W.H. The crystal structure of acetohydroxamic acid hemihydrate. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1970, 26, 1705–1709. [Google Scholar] [CrossRef]
- Hope, G.A.; Woods, R.; Buckley, A.N.; White, J.M.; McLean, J. Spectroscopic characterisation of n-octanohydroxamic acid and potassium hydrogen n-octanohydroxamate. Inorg. Chim. Acta 2010, 363, 935–943. [Google Scholar] [CrossRef]
- Ferguson, G.; Glidewell, C. N-Propionylhydroxylamine forms a three-dimensional hydrogen-bonded framework structure. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2001, 57, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
HA2 | HA6 | HA10 | HA12 | |
---|---|---|---|---|
Empirical formula | C2 H5 N O2 | C6 H13 N O2 | C10 H21 N O2 | C12 H25 N O2 |
Formula weight | 75.07 | 131.17 | 187.28 | 215.33 |
Crystal system | Monoclinic | Monoclinic | Monoclinic | Monoclinic |
Space group | P21/c | P21 | P21 | P21 |
Unit cell dimensions (Å, °) | a = 8.833(2) | a = 4.7538(5) | a = 4.7316(3) | a = 4.7116(3) |
b = 12.021(3) | b = 4.3759(5) | b = 4.2874(4) | b = 4.2943(3) | |
c = 7.0434(16) | c = 18.699(2) | c = 28.392(2) | c = 33.448(2) | |
Β = 106.42(3) | Β = 90.436(11) | Β = 90.052(7) | Β = 90.098(6) | |
Volume (Å3) | 717.3(3) | 388.97(8) | 575.96(8) | 676.75(8) |
Z | 8 | 2 | 2 | 2 |
Density (calculated) (g/cm3) | 1.390 | 1.120 | 1.080 | 1.057 |
θ range for data collection (°) | 3.390 to 26.292 | 4.360 to 25.223 | 3.588 to 25.245 | 2.436 to 25.252 |
Reflections collected | 4231 | 2892 | 3766 | 4128 |
Independent reflections | 1414 [R(int) = 0.0562] | 1386 [R(int) = 0.0532] | 1969 [R(int) = 0.0466] | 2445 [R(int) = 0.0251] |
Data/restraints/parameters | 1414/0/103 | 1386/1/88 | 1969/1/124 | 2445/191/239 |
Goodness-of-fit on F2 | 1.065 | 1.078 | 1.091 | 1.077 |
Final R indices [I > 2σ(I)] | R1 = 0.0521, wR2 = 0.1468 | R1 = 0.0555, wR2 = 0.1350 | R1 = 0.0682, wR2 = 0.1732 | R1 = 0.0494, wR2 = 0.1146 |
R indices (all data) | R1 = 0.0595, wR2 = 0.1549 | R1 = 0.0649, wR2 = 0.1441 | R1 = 0.0765, wR2 = 0.1799 | R1 = 0.0745, wR2 = 0.1249 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sow, I.S.; Gelbcke, M.; Dufrasne, F.; Robeyns, K. Crystal Structures of a Series of Hydroxamic Acids. Molbank 2023, 2023, M1637. https://doi.org/10.3390/M1637
Sow IS, Gelbcke M, Dufrasne F, Robeyns K. Crystal Structures of a Series of Hydroxamic Acids. Molbank. 2023; 2023(2):M1637. https://doi.org/10.3390/M1637
Chicago/Turabian StyleSow, Ibrahima Sory, Michel Gelbcke, François Dufrasne, and Koen Robeyns. 2023. "Crystal Structures of a Series of Hydroxamic Acids" Molbank 2023, no. 2: M1637. https://doi.org/10.3390/M1637
APA StyleSow, I. S., Gelbcke, M., Dufrasne, F., & Robeyns, K. (2023). Crystal Structures of a Series of Hydroxamic Acids. Molbank, 2023(2), M1637. https://doi.org/10.3390/M1637