Ethyl 2-(12-Oxo-10,12-dihydroisoindolo[1,2-b] Quinazolin-10-yl) Acetate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. UV-Vis Absorption and Fluorescence Emission
3. Materials and Methods
3.1. General Information
3.2. Materials
3.3. General Procedure for the Synthesis of Compound A
3.4. General Procedure for the Synthesis of Compound B
3.5. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. Eur. J. Med. Chem. 2014, 76, 193–244. [Google Scholar] [CrossRef] [PubMed]
- Hölzl, W.; Rotzinger, B. Isoindolo[2,1-a]quinazoline Derivatives for Stabilization of Organic Materials. Patent WO2013/139799A1, 26 September 2013. [Google Scholar]
- Rao, V.A.; Agama, K.; Holbeck, S.; Pommier, Y. Batracylin (NSC 320846), a Dual Inhibitor of DNA Topoisomerases I and II Induces Histone γ-H2AX as a Biomarker of DNA Damage. Cancer Res. 2007, 67, 9971–9979. [Google Scholar] [CrossRef] [PubMed]
- Plowman, J.; Paull, K.D.; Atassi, G.; Harrison, S.D., Jr.; Dykes, D.J.; Kabbe, H.J.; Narayanan, V.L.; Yoder, O.C. Preclinical antitumor activity of batracylin (NSC 320846). Investig. New Drugs 1988, 6, 147–153. [Google Scholar] [CrossRef]
- Dzierzbicka, K.; Januchta, W.; Skladanowski, A. Novel Approaches in the Synthesis of Batracylin and Its Analogs: Rebirth of an Old Player? Curr. Med. Chem. 2012, 19, 4475–4487. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Neumann, H.; Bellera, M.; Wu, X.-F. Palladium-catalyzed synthesis of isoindoloquinazolinones via dicarbonylation of 1,2-dibromoarenes. Org. Biomol. Chem. 2014, 12, 5835–5838. [Google Scholar] [CrossRef] [PubMed]
- Kshirsagar, U.A.; Argade, N.P. Facile approach to diverse range of 1,3-diaza-heterocycles: Angular/linear selectivity paradigm and a remarkable intramolecular methyl migration. Tetrahedron 2009, 65, 5244–5250. [Google Scholar] [CrossRef]
- Li, W.; Wan, B.; Shi, R.; Chen, S.; Li, J.; Wang, F.; Niu, H.; Xu, X.-M.; Wang, W.-L. Catalyst-free one-pot cascade cyclization: An efficient synthesis of isoindolobenzoxazinones and isoindoloquinazolinones derivatives. Tetrahedron 2022, 104, 132571. [Google Scholar] [CrossRef]
- Januchta, W.; Serocki, M.; Dzierzbicka, K.; Cholewinski, G.; Gensickaa, M.; Skladanowski, A. Synthesis and biological evaluation of novel analogues of batracylin with synthetic amino acids and adenosine: An unexpected effect on centromere segregation in tumor cells through a dual inhibition of topoisomerase IIα and Aurora B. RSC Adv. 2016, 6, 42794–42806. [Google Scholar] [CrossRef]
- Tseng, M.-C.; Lai, P.-Y.; Shi, L.; Li, H.-Y.; Tseng, M.-J.; Chu, Y.-H. Synthesis of batracylin and its N-sulfonamido analogues in [b-3C-im] [NTf2] ionic liquid. Tetrahedron 2014, 70, 2629–2633. [Google Scholar] [CrossRef]
- Shankara, R.; Balu Wagha, M.; Madhubabua, M.V.; Vembub, N.; Kumar, U.K.S. A Concise and Cascade Synthesis of Batracylin and Substituted Isoindolo-[1,2-b] quinazolin-12(10H)-ones. Synlett 2011, 6, 844–848. [Google Scholar] [CrossRef]
- Martínez-Viturro, C.M.; Domínguez, D. Synthesis of the antitumoural agent batracylin and related isoindolo[1,2-b] quinazolin-12(10H)-ones. Tetrahedron Lett. 2007, 48, 1023–1026. [Google Scholar] [CrossRef]
- Morlacci, V.; Caruso, T.; Chiarini, M.; Arcadi, A.; Aschi, M.; Palombi, L. Electrochemical-Induced Cascade Reaction of 2-Formyl Benzonitrile with Anilines: Synthesis of N-Aryl Isoindolinones. Molecules 2022, 27, 8199. [Google Scholar] [CrossRef]
- Serusi, L.; Massa, A.; Tedesco, C.; Capobianco, A.; Palombi, L. The First Highly Enantioselective Synthesis of 3-Sulfinyl-Substituted Isoindolinones Having Adjacent Carbon and Sulfur Stereocenters. J. Org. Chem. 2021, 86, 10630–10639. [Google Scholar] [CrossRef]
- Palombi, L.; Di Mola, A.; Massa, A. Quick and easy access to N-Mannich bases of 1-isoindolinones by catalytic electroactivation of primary and secondary amines and tandem reaction with 2-formylbenzonitriles. New J. Chem. 2015, 39, 81–84. [Google Scholar] [CrossRef]
- Capobianco, A.; Di Mola, A.; Intintoli, V.; Massa, A.; Capaccio, V.; Roiser, L.; Waser, M.; Palombi, L. Asymmetric tandem hemiaminal-heterocyclization-aza-Mannich reaction of 2-formylbenzonitriles and amines using chiral phase transfer catalysis: An experimental and theoretical study. RSC Adv. 2016, 6, 31861–31870. [Google Scholar] [CrossRef]
- Purohit, D.; Rawat, K.S.; Parveen, S.; Vats, R.P.; Sharma, C.P.; Goel, A. One-Pot Synthesis of Functionalized Isoindolinones and Their Bis(isoindolinone)ethane Derivatives. Eur. J. Org. Chem. 2022, 47, e202201128. [Google Scholar] [CrossRef]
- Singh, H.; Tiwari, K.; Tiwari, R.; Pramanik, S.K.; Das, A. Small Molecule as Fluorescent Probes for Monitoring Intracellular Enzymatic Transformations. Chem. Rev. 2019, 119, 11718–11760. [Google Scholar] [CrossRef]
- Jun, J.V.; Chenoweth, D.M.; Petersson, E.J. Rational design of small molecule fluorescent probes for biological applications. Org. Biomol. Chem. 2020, 18, 5747–5763. [Google Scholar] [CrossRef]
- Evoniuk, C.J.; Ly, M.; Alabugin, I.V. Coupling cyclizations with fragmentations for the preparation of heteroaromatics: Quinolines from o-alkenyl arylisocyanides and boronic acids. Chem. Commun. 2015, 51, 12831–12834. [Google Scholar] [CrossRef]
- Casida, M.E.; Jamorski, C.; Casida, K.C.; Salahub, D.R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1998, 108, 4439–4449. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian Inc.: New Haven County, CT, USA, 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morlacci, V.; Aschi, M.; Chiarini, M.; Massa, A.; Arcadi, A.; Palombi, L. Ethyl 2-(12-Oxo-10,12-dihydroisoindolo[1,2-b] Quinazolin-10-yl) Acetate. Molbank 2023, 2023, M1628. https://doi.org/10.3390/M1628
Morlacci V, Aschi M, Chiarini M, Massa A, Arcadi A, Palombi L. Ethyl 2-(12-Oxo-10,12-dihydroisoindolo[1,2-b] Quinazolin-10-yl) Acetate. Molbank. 2023; 2023(2):M1628. https://doi.org/10.3390/M1628
Chicago/Turabian StyleMorlacci, Valerio, Massimiliano Aschi, Marco Chiarini, Antonio Massa, Antonio Arcadi, and Laura Palombi. 2023. "Ethyl 2-(12-Oxo-10,12-dihydroisoindolo[1,2-b] Quinazolin-10-yl) Acetate" Molbank 2023, no. 2: M1628. https://doi.org/10.3390/M1628
APA StyleMorlacci, V., Aschi, M., Chiarini, M., Massa, A., Arcadi, A., & Palombi, L. (2023). Ethyl 2-(12-Oxo-10,12-dihydroisoindolo[1,2-b] Quinazolin-10-yl) Acetate. Molbank, 2023(2), M1628. https://doi.org/10.3390/M1628