Bis(2-phenylpyridinato,-C2′,N)[4,4′-bis(4-Fluorophenyl)-6,6′-dimethyl-2,2′-bipyridine] Iridium(III) Hexafluorophosphate
Abstract
:1. Introduction
2. Results and Discussion
2.1. NMR Spectroscopy in Solution
2.2. Photophysical Properties
2.2.1. Electronic Absorption Spectroscopy
2.2.2. Emission Spectrum
2.3. Description of the Structure (X-ray)
3. Materials and Methods
3.1. Materials
3.2. Methods
3.3. Crystal Structure Determination
3.4. Synthesis
Synthesis of [Ir(ppy)2L]PF6 (1)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhao, Q.; Huang, C.; Li, F. Phosphorescent Heavy-Metal Complexes for Bioimaging. Chem. Soc. Rev. 2011, 40, 2508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, S.; Din, I.; Raheel, A.; Tameez ud Din, A. Cyclometalated Iridium (III) Complexes: Recent Advances in Phosphorescence Bioimaging and Sensing Applications. Appl. Organomet. Chem. 2020, 34, e5413. [Google Scholar] [CrossRef]
- Caporale, C.; Massi, M. Cyclometalated Iridium(III) Complexes for Life Science. Coord. Chem. Rev. 2018, 363, 71–91. [Google Scholar] [CrossRef] [Green Version]
- Shon, J.-H.; Kim, D.; Rathnayake, M.D.; Sittel, S.; Weaver, J.; Teets, T.S. Photoredox Catalysis on Unactivated Substrates with Strongly Reducing Iridium Photosensitizers. Chem. Sci. 2021, 12, 4069–4078. [Google Scholar] [CrossRef]
- Monti, F.; Baschieri, A.; Sambri, L.; Armaroli, N. Excited-State Engineering in Heteroleptic Ionic Iridium(III) Complexes. Acc. Chem. Res. 2021, 54, 1492–1505. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.-L.; Lin, S.; Wang, W.; Yang, C.; Leung, C.-H. Luminescent Chemosensors by Using Cyclometalated Iridium(III) Complexes and Their Applications. Chem. Sci. 2017, 8, 878–889. [Google Scholar] [CrossRef] [Green Version]
- Connell, T.U.; Donnelly, P.S. Labelling Proteins and Peptides with Phosphorescent d6 Transition Metal Complexes. Coord. Chem. Rev. 2018, 375, 267–284. [Google Scholar] [CrossRef]
- Li, T.-Y.; Wu, J.; Wu, Z.-G.; Zheng, Y.-X.; Zuo, J.-L.; Pan, Y. Rational Design of Phosphorescent Iridium(III) Complexes for Emission Color Tunability and Their Applications in OLEDs. Coord. Chem. Rev. 2018, 374, 55–92. [Google Scholar] [CrossRef]
- Reddy, M.L.P.; Bejoymohandas, K.S. Evolution of 2, 3′-Bipyridine Class of Cyclometalating Ligands as Efficient Phosphorescent Iridium(III) Emitters for Applications in Organic Light Emitting Diodes. J. Photochem. Photobiol. C Photochem. Rev. 2016, 29, 29–47. [Google Scholar] [CrossRef]
- Bai, R.; Meng, X.; Wang, X.; He, L. Blue-Emitting Iridium(III) Complexes for Light-Emitting Electrochemical Cells: Advances, Challenges, and Future Prospects. Adv. Funct. Mater. 2020, 30, 1907169. [Google Scholar] [CrossRef]
- Tamayo, A.B.; Garon, S.; Sajoto, T.; Djurovich, P.I.; Tsyba, I.M.; Bau, R.; Thompson, M.E. Cationic Bis-Cyclometalated Iridium(III) Diimine Complexes and Their Use in Efficient Blue, Green, and Red Electroluminescent Devices. Inorg. Chem. 2005, 44, 8723–8732. [Google Scholar] [CrossRef] [PubMed]
- Housecroft, C.E.; Constable, E.C. Over the LEC Rainbow: Colour and Stability Tuning of Cyclometallated Iridium(III) Complexes in Light-Emitting Electrochemical Cells. Coord. Chem. Rev. 2017, 350, 155–177. [Google Scholar] [CrossRef] [Green Version]
- Ertl, C.D.; Cerdá, J.; Junquera-Hernández, J.M.; Pertegás, A.; Bolink, H.J.; Constable, E.C.; Neuburger, M.; Ortí, E.; Housecroft, C.E. Colour Tuning by the Ring Roundabout: [Ir(C^N)2(N^N)] + Emitters with Sulfonyl-Substituted Cyclometallating Ligands. RSC Adv. 2015, 5, 42815–42827. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.D.; Ortí, E.; Bolink, H.J. Recent Advances in Light-Emitting Electrochemical Cells. Pure Appl. Chem. 2011, 83, 2115–2128. [Google Scholar] [CrossRef]
- Baranoff, E.; Bolink, H.J.; Constable, E.C.; Delgado, M.; Häussinger, D.; Housecroft, C.E.; Nazeeruddin, M.K.; Neuburger, M.; Ortí, E.; Schneider, G.E. Tuning the Photophysical Properties of Cationic Iridium(III) Complexes Containing Cyclometallated 1-(2,4-Difluorophenyl)-1H-Pyrazole through Functionalized 2,2′-Bipyridineligands: Blue but Not Blue Enough. Dalton Trans. 2013, 42, 1073–1087. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.D.; Ortí, E.; Tordera, D.; Pertegás, A.; Bolink, H.J.; Graber, S.; Housecroft, C.E.; Sachno, L.; Neuburger, M.; Constable, E.C. Stable and Efficient Solid-State Light-Emitting Electrochemical Cells Based on a Series of Hydrophobic Iridium Complexes. Adv. Energy Mater. 2011, 1, 282–290. [Google Scholar] [CrossRef]
- Schmid, B.; Garces, F.O.; Watts, R.J. Synthesis and Characterizations of Cyclometalated Iridium(III) Solvento Complexes. Inorg. Chem. 1994, 33, 9–14. [Google Scholar] [CrossRef]
- Constable, E.C.; Housecroft, C.E.; Neuburger, M.; Poleschak, I.; Zehnder, M. Functionalised 2,2′-Bipyridine Ligands for the Preparation of Metallostars; X-Ray Structures of Free Ligands and Preparation of Copper(I) and Silver(I) Complexes. Polyhedron 2003, 22, 93–108. [Google Scholar] [CrossRef]
- Constable, E.C.; Housecroft, C.E.; Kopecky, P.; Martin, C.J.; Wright, I.A.; Zampese, J.A.; Bolink, H.J.; Pertegas, A. Solution, Structural and Photophysical Aspects of Substituent Effects in the N^N Ligand in [Ir(C^N)2(N^N)]+ Complexes. Dalton Trans. 2013, 42, 8086–8103. [Google Scholar] [CrossRef]
- Deaton, J.C.; Castellano, F.N. Archetypal Iridium(III) Compounds for Optoelectronic and Photonic Applications: Photophysical Properties and Synthetic Methods. In Iridium (III), in Optoelectronic and Photonics Applications, 1st ed.; Zysman-Colman, E., Ed.; Willey: Hoboken, NJ, USA, 2017; ISBN 9781119007135. [Google Scholar]
- Dreyse, P.; González, I.; Cortés-Arriagada, D.; Ramírez, O.; Salas, I.; González, A.; Toro-Labbe, A.; Loeb, B. New Cyclometalated Ir(III) Complexes with Bulky Ligands with Potential Applications in LEC Devices: Experimental and Theoretical Studies of Their Photophysical Properties. New J. Chem. 2016, 40, 6253–6263. [Google Scholar] [CrossRef]
- Costa, R.D.; Ortí, E.; Bolink, H.J.; Graber, S.; Housecroft, C.E.; Constable, E.C. Efficient and Long-Living Light-Emitting Electrochemical Cells. Adv. Funct. Mater. 2010, 20, 1511–1520. [Google Scholar] [CrossRef]
- Skórka, Ł.; Filapek, M.; Zur, L.; Małecki, J.G.; Pisarski, W.; Olejnik, M.; Danikiewicz, W.; Krompiec, S. Highly Phosphorescent Cyclometalated Iridium(III) Complexes for Optoelectronic Applications: Fine Tuning of the Emission Wavelength through Ancillary Ligands. J. Phys. Chem. C 2016, 120, 7284–7294. [Google Scholar] [CrossRef]
- Kiran, R.V.; Hogan, C.F.; James, B.D.; Wilson, D.J.D. Photophysical and Electrochemical Properties of Phenanthroline-Based Biscyclometallated Iridium Complexes in Aqueous and Organic Media. Eur. J. Inorg. Chem. 2011, 2011, 4816–4825. [Google Scholar] [CrossRef]
- Demir, N.; Karaman, M.; Yakali, G.; Tugsuz, T.; Denizalti, S.; Demic, S.; Dindar, B.; Can, M. Structure−Property Relationship in Amber Color Light-Emitting Electrochemical Cell with TFSI Counteranion: Enhancing Device Performance by Different Substituents on N∧N Ligand. Inorg. Chem. 2021, 60, 4410–4423. [Google Scholar] [CrossRef] [PubMed]
- Suhr, K.J.; Bastatas, L.D.; Shen, Y.; Mitchell, L.A.; Frazier, G.A.; Taylor, D.W.; Slinker, J.D.; Holliday, B.J. Phenyl substitution of cationic bis-cyclometalated iridium(III) complexes for iTMC-LEECs. Dalton Trans. 2016, 45, 17807–17823. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, L.-J.; Zhang, Y.; Hu, Y.-X.; Jiang, W.-L.; Yin, G.-Q.; Tan, H.; Li, X.; Xu, L.; Yang, H.-B. Photoswitchable Förster resonance energy transfer (FRET) within a heterometallic Ir–Pt macrocycle. Chem. Comm. 2019, 55, 11119–11122. [Google Scholar] [CrossRef] [PubMed]
- Malzner, F.J.; Brauchli, S.Y.; Constable, E.C.; Housecroft, C.E.; Neuburger, M. Halos Show the Path to Perfection: Peripheral Iodo-Substituents Improve the Efficiencies of Bis(Diimine)Copper(I) Dyes in DSCs. RSC Adv. 2014, 4, 48712–48723. [Google Scholar] [CrossRef] [Green Version]
- Hitoshi Ishida, H.; Tobita, S.; Hasegawac, Y.; Katoh, R.; Nozaki, K. Recent advances in instrumentation for absolute emission quantum yield measurements. Coord. Chem. Rev 2010, 254, 2449–2458. [Google Scholar] [CrossRef]
- Bruker. APEX 3. In SAINT, SHELXT; Bruker AXS Inc.: Fitchburg, WI, USA, 2016. [Google Scholar]
- Sheldrick, G.M. SADABS; University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 65, 148–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbour, L.J. X-Seed—A Software Tool for Supramolecular Crystallography. J. Supramol. Chem. 2001, 1, 189–191. [Google Scholar] [CrossRef]
H | ppy, L | [Ir(ppy)2L)][PF6] | Δδ = δcom − δppy/L |
---|---|---|---|
H3′ ppy | 6.10 | 6.19 | +0.09 |
H4′ ppy | 6.76 | 6.78 | +0.02 |
H5′ ppy | 6.90 | 6.96 | +0.06 |
H6′ ppy | 7.75 | 7.83 | +0.08 |
H3 ppy | 8.26 | 8.26 | 0 |
H4 ppy | 8.16 | 8.01 | −0.14 |
H5 ppy | 7.53 | 7.24 | −0.29 |
H6 ppy | 9.23 | 8.25 | −0.98 |
H5/H5′ bpy | 7.61 | 7.87 | +0.26 |
H3/H3′ bpy | 8.62 | 9.07 | +0.45 |
H2″/H6″ bpy | 7.92 | 8.07 | +0.15 |
H3″/H5″ bpy | 7.35 | 7.35 | 0 |
CH3 | 2.68 | 2.04 | −0.64 |
Bond Distances (Å) | |||
Ir(1)-N(1) | 2.219(14) | Ir(1)-N(4) | 2.032(15) |
Ir(1)-N(2) | 2.247(13) | Ir(1)-C(25) | 2.018(19) |
Ir(1)-N(3) | 2.019(13) | Ir(1)-C(47) | 1.936(15) |
Bond Angles (o) | |||
C(47)-Ir(1)-C(25) | 83.5(7) | N(3)-Ir(1)-N(1) | 98.3(5) |
C(47)-Ir(1)-N(3) | 80.6(6) | N(4)-Ir(1)-N(1) | 85.1(5) |
C(25)-Ir(1)-N(3) | 94.3(7) | C(47)-Ir(1)-N(2) | 100.2(6) |
C(47)-Ir(1)-N(4) | 96.1(6) | C(25)-Ir(1)-N(2) | 174.8(6) |
C(25)-Ir(1)-N(4) | 81.3(7) | N(3)-Ir(1)-N(2) | 90.0(5) |
N(3)-Ir(1)-N(4) | 174.8(6) | N(4)-Ir(1)-N(2) | 94.6(5) |
C(47)-Ir(1)-N(1) | 177.0(6) | N(1)-Ir(1)-N(2) | 76.9(5) |
C(25)-Ir(1)-N(1) | 99.4(6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glykos, D.; Plakatouras, J.C.; Malandrinos, G. Bis(2-phenylpyridinato,-C2′,N)[4,4′-bis(4-Fluorophenyl)-6,6′-dimethyl-2,2′-bipyridine] Iridium(III) Hexafluorophosphate. Molbank 2023, 2023, M1610. https://doi.org/10.3390/M1610
Glykos D, Plakatouras JC, Malandrinos G. Bis(2-phenylpyridinato,-C2′,N)[4,4′-bis(4-Fluorophenyl)-6,6′-dimethyl-2,2′-bipyridine] Iridium(III) Hexafluorophosphate. Molbank. 2023; 2023(2):M1610. https://doi.org/10.3390/M1610
Chicago/Turabian StyleGlykos, Dimitrios, John C. Plakatouras, and Gerasimos Malandrinos. 2023. "Bis(2-phenylpyridinato,-C2′,N)[4,4′-bis(4-Fluorophenyl)-6,6′-dimethyl-2,2′-bipyridine] Iridium(III) Hexafluorophosphate" Molbank 2023, no. 2: M1610. https://doi.org/10.3390/M1610
APA StyleGlykos, D., Plakatouras, J. C., & Malandrinos, G. (2023). Bis(2-phenylpyridinato,-C2′,N)[4,4′-bis(4-Fluorophenyl)-6,6′-dimethyl-2,2′-bipyridine] Iridium(III) Hexafluorophosphate. Molbank, 2023(2), M1610. https://doi.org/10.3390/M1610