tert-Butyl 2-Amino-3-cyano-5-oxo-4-phenyl-5,7-dihydropyrano[2,3-c]pyrrole-6(4H)-carboxylate
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Synthesis of tert-Butyl 2-Amino-3-cyano-5-oxo-4-phenyl-5,7-dihydropyrano[2,3-c]pyrrole-6(4H)-carboxylate (3)
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghisalberti, E.L. Bioactive tetramic acid metabolites. Stud. Nat. Prod. Chem. 2003, 28, 109–163. [Google Scholar] [CrossRef]
- Royles, B.J.L. Naturally occurring tetramic acids: Structure, isolation, and synthesis. Chem. Rev. 1995, 95, 1981–2001. [Google Scholar] [CrossRef]
- Berek-Nagy, P.J.; Csíkos, S.; Tóth, G.; Bősze, S.; Horváth, L.B.; Darcsi, A.; Knapp, D.G.; Kovács, G.M.; Boldizsár, I. The grass root endophytic fungus Flavomyces fulophazii: An abundant source of tetramic acid and chlorinated azaphilone derivatives. Phytochemistry 2021, 190, 112851. [Google Scholar] [CrossRef]
- Mo, X.; Li, Q.; Ju, J. Naturally occurring tetramic acid products: Isolation, structure elucidation and biological activity. RSC Adv. 2014, 4, 50566–50593. [Google Scholar] [CrossRef]
- Jiang, M.; Chen, S.; Li, J.; Liu, L. The biological and chemical diversity of tetramic acid compounds from marine-derived microorganisms. Mar. Drugs 2020, 18, 114. [Google Scholar] [CrossRef]
- Matiadis, D. Metal-catalyzed and metal-mediated approaches to the synthesis and functionalization of tetramic acids. Catalysts 2019, 9, 50. [Google Scholar] [CrossRef]
- Hamilakis, S.; Kontonassios, D.; Sandris, C. Acylaminoacetyl derivatives of active methylene compounds. J. Heterocycl. Chem. 1996, 33, 825–829. [Google Scholar] [CrossRef]
- Jouin, P.; Castro, B.; Nisato, D. Stereospecific synthesis of N-protected statine and its analogues via chiral tetramic acid. J. Chem. Soc. Perkin Trans. 1 1987, 1177–1182. [Google Scholar] [CrossRef]
- Jeong, Y.-C.; Moloney, M.G. Tetramic acids as scaffolds: Synthesis, tautomeric and antibacterial behaviour. Synlett 2009, 2009, 2487–2491. [Google Scholar] [CrossRef]
- Liu, Z.; Ruan, X.; Huang, X. A facile solid phase synthesis of tetramic acid. Bioorg. Med. Chem. Lett. 2003, 13, 2505–2507. [Google Scholar] [CrossRef]
- Pirc, S.; Bevk, D.; Jakše, R.; Rečnik, S.; Golič, L.; Golobič, A.; Meden, A.; Stanovnik, B.; Svete, J. Synthesis of N-substituted 3-aminomethylidenetetramic acids. Synthesis 2005, 17, 2969–2988. [Google Scholar] [CrossRef]
- Hu, Z.-P.; Lou, C.-L.; Wang, J.-J.; Chen, C.-X.; Yan, M. Organocatalytic conjugate addition of alononitrile to conformationally restricted dienones. J. Org. Chem. 2011, 76, 3797–3804. [Google Scholar] [CrossRef]
- Hu, Z.-P.; Wang, W.-J.; Yin, X.-G.; Zhang, X.-J.; Yan, M. Enantioselective synthesis of 2-amino-4H-pyrans via the organocatalytic cascade reaction of malononitrile and α-substituted chalcones. Tetrahedron Asymmetry 2012, 23, 461–467. [Google Scholar] [CrossRef]
- Zhao, S.-L.; Zheng, C.-W.; Zhao, G. Enantioselective synthesis of multifunctionalized 4H-pyran derivatives using bifunctional thiourea-tertiary amine catalysts. Tetrahedron Asymmetry 2009, 20, 1046–1051. [Google Scholar] [CrossRef]
- Wang, H.X.; Wu, L.L.; Wang, Y.M.; Zhou, Z.H. Organocatalyzed asymmetric tandem Michael-cyclization reaction of 4-benzylidene-3-methylpyrazol-5-ones and malononitrile: Stereocontrolled construction of pyrano[2,3-c]pyrazole scaffold. RSC Adv. 2015, 5, 42836–42842. [Google Scholar] [CrossRef]
- Ričko, S.; Meden, A.; Ivančič, A.; Perdih, A.; Štefane, B.; Svete, J.; Grošelj, U. Organocatalyzed deracemization of Δ2-pyrrolin-4-ones. Adv. Synth. Catal. 2017, 359, 2288–2296. [Google Scholar] [CrossRef]
- Ričko, S.; Meden, A.; Ciber, L.; Štefane, B.; Požgan, F.; Svete, J.; Grošelj, U. Construction of vicinal tetrasubstituted stereogenic centers via a mannich-type organocatalyzed addition of Δ2-pyrrolin-4-ones to isatin imines. Adv. Synth. Catal. 2018, 360, 1072–1076. [Google Scholar] [CrossRef]
- Grošelj, U.; Ciber, L.; Gnidovec, J.; Testen, Ž.; Požgan, F.; Štefane, B.; Tavčar, G.; Svete, J.; Ričko, S. Synthesis of spiro-Δ2-pyrrolin-4-one pseudo enantiomers via an organocatalyzed sulfa-Michael/aldol domino sequence. Adv. Synth. Catal. 2019, 361, 5118–5126. [Google Scholar] [CrossRef]
- Ričko, S.; Testen, Ž.; Ciber, L.; Požgan, F.; Štefane, B.; Brodnik, H.; Svete, J.; Grošelj, U. Double spirocyclization of arylidene-Δ2-pyrrolin-4-ones with 3-isothiocyanato oxindoles. Catalysts 2020, 10, 1211. [Google Scholar] [CrossRef]
- Ciber, L.; Ričko, S.; Gregorc, J.; Požgan, F.; Svete, J.; Brodnik, H.; Štefane, B.; Grošelj, U. Mechanistic insights into annulation of arylidene-Δ2-pyrrolin-4-ones by cinchona squaramide-based organocatalysts. Adv. Synth. Catal. 2022, 364, 980–993. [Google Scholar] [CrossRef]
- Ciber, L.; Gorenc, A.; Hozjan, M.; Požgan, F.; Svete, J.; Brodnik, H.; Štefane, B.; Grošelj, U. Enantioselective organocatalyzed functionalization of tetramic and tetronic acids. Adv. Synth. Catal. 2022, 364, 3840–3855. [Google Scholar] [CrossRef]
- Baran, R.; Veverková, E.; Škvorcová, A.; Šebesta, R. Enantioselective Michael addition of 1,3-dicarbonyl compounds to a nitroalkene catalyzed by chiral squaramides—A key step in the synthesis of pregabalin. Org. Biomol. Chem. 2013, 11, 7705–7711. [Google Scholar] [CrossRef] [PubMed]
- Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona organocatalysts. Org. Lett. 2005, 7, 1967–1969. [Google Scholar] [CrossRef] [PubMed]
- Ričko, S.; Svete, J.; Štefane, B.; Perdih, A.; Golobič, A.; Meden, A.; Grošelj, U. 1,3-diamine-derived bifunctional organocatalyst prepared from camphor. Adv. Synth. Catal. 2016, 358, 3786–3796. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hozjan, M.; Ciber, L.; Požgan, F.; Svete, J.; Štefane, B.; Grošelj, U. tert-Butyl 2-Amino-3-cyano-5-oxo-4-phenyl-5,7-dihydropyrano[2,3-c]pyrrole-6(4H)-carboxylate. Molbank 2023, 2023, M1575. https://doi.org/10.3390/M1575
Hozjan M, Ciber L, Požgan F, Svete J, Štefane B, Grošelj U. tert-Butyl 2-Amino-3-cyano-5-oxo-4-phenyl-5,7-dihydropyrano[2,3-c]pyrrole-6(4H)-carboxylate. Molbank. 2023; 2023(1):M1575. https://doi.org/10.3390/M1575
Chicago/Turabian StyleHozjan, Mišel, Luka Ciber, Franc Požgan, Jurij Svete, Bogdan Štefane, and Uroš Grošelj. 2023. "tert-Butyl 2-Amino-3-cyano-5-oxo-4-phenyl-5,7-dihydropyrano[2,3-c]pyrrole-6(4H)-carboxylate" Molbank 2023, no. 1: M1575. https://doi.org/10.3390/M1575
APA StyleHozjan, M., Ciber, L., Požgan, F., Svete, J., Štefane, B., & Grošelj, U. (2023). tert-Butyl 2-Amino-3-cyano-5-oxo-4-phenyl-5,7-dihydropyrano[2,3-c]pyrrole-6(4H)-carboxylate. Molbank, 2023(1), M1575. https://doi.org/10.3390/M1575