Synthesis and Crystal Structure of 3-(4-Cyano-3-nitro-1H-pyrazol-5-yl)-4-nitrofurazan: Comparison of the Influence of the NO2 and CN Groups on Crystal Packing and Density
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sheremetev, A.B.; Makhova, N.N.; Friedrichsen, W. Monocyclic Furazans and Furoxans. Adv. Heterocycl. Chem. 2001, 78, 65–188. [Google Scholar] [CrossRef]
- Fershtat, L.L.; Makhova, N.N. 1,2,5-Oxadiazole-Based High-Energy-Density Materials: Synthesis and Performance. ChemPlusChem 2020, 85, 13–42. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhou, J.; Bi, F.; Wang, B. Energetic materials based on poly furazan and furoxan structures. Chin. Chem. Lett. 2020, 31, 2375–2394. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, M.J.; Zhao, W.; Qu, Y.; Xing, X.W.; Meng, J.W.; Liu, Y.C. Application and Development of 3,4-Bis(3-nitrofurazan-4-yl)furoxan (DNTF). Russ. J. Gen. Chem. 2021, 91, 445–455. [Google Scholar] [CrossRef]
- Tang, J.; Yang, H.; Cui, Y.; Cheng, G. Nitrogen-rich tricyclic-based energetic materials. Mater. Chem. Front. 2021, 5, 7108–7118. [Google Scholar] [CrossRef]
- Xiao, M.; Jin, X.; Zhou, J.; Hu, B. 1,2,5-Oxadiazole-1,2,3,4-tetrazole-based high-energy materials: Molecular design and screening. Struct. Chem. 2021, 32, 1619–1628. [Google Scholar] [CrossRef]
- Gulyaev, D.A.; Klenov, M.S.; Churakov, A.M.; Strelenko, Y.A.; Pivkina, A.N.; Tartakovsky, V.A. Synthesis of energetic compounds containing (3-nitro-1H-1,2,4-triazol-1-yl)-NNO-azoxy moiety. Russ. Chem. Bull. 2021, 70, 1599–1604. [Google Scholar] [CrossRef]
- Zhu, Y.; Ding, L.; Xu, L.; Chang, H.; Wang, X.; Zhang, X. Evaluation of the Thermal Hazard of the Oxidation Reaction in the Synthesis of 3,4-Bis(4-nitrofurazan-3-yl)furoxan. Org. Proc. Res. Dev. 2022, 26, 1389–1397. [Google Scholar] [CrossRef]
- Zaitsev, A.A.; Dalinger, I.L.; Shevelev, S.A. Dinitropyrazoles. Russ. Chem. Rev. 2009, 78, 589–627. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, Z.; Lan, D.; Jia, Q.; Liu, N.; Zhang, J.; Kou, K. Recent Advances in Synthesis and Properties of Nitrated-Pyrazoles Based Energetic Compounds. Molecules 2020, 25, 3475. [Google Scholar] [CrossRef]
- Zlotin, S.G.; Dalinger, I.L.; Makhova, N.N.; Tartakovsky, V.A. Nitro compounds as the core structures of promising energetic materials and versatile reagents for organic synthesis. Russ. Chem. Rev. 2020, 89, 1–54. [Google Scholar] [CrossRef]
- Chen, D.; Xiong, H.; Yang, H.; Tang, J.; Cheng, G. Nitropyrazole based tricyclic nitrogen-rich cation salts: A new class of promising insensitive energetic materials. FirePhysChem 2021, 1, 71–75. [Google Scholar] [CrossRef]
- Wu, B.; Yang, L.; Zhai, D.; Ma, C.; Pei, C. Facile synthesis of 4-amino-3,5-dinitropyrazolated energetic derivatives via 4-bromopyrazole and their performances. FirePhysChem 2021, 1, 76–82. [Google Scholar] [CrossRef]
- Lai, Y.; Liu, Y.; Huang, W.; Zeng, Z.; Yang, H.; Tang, Y. Synthesis and characterization of pyrazole- and imidazole- derived energetic compounds featuring ortho azido/nitro groups. FirePhysChem 2022, 2, 140–146. [Google Scholar] [CrossRef]
- Bölter, M.F.; Harter, A.; Klapötke, T.M.; Stierstorfer, J. Isomers of Dinitropyrazoles: Synthesis, comparison and Tuning of their Physicochemical Properties. ChemPlusChem 2018, 83, 804. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, J.L.; Wang, B.Z.; Qiu, L.L.; Xu, R.Q.; Sheremetev, A.B. Recent synthetic efforts towards high energydensity materials: How to design high-performance energetic structures? FirePhysChem 2022, 2, 83–139. [Google Scholar] [CrossRef]
- Sheremetev, A.B.; Yudin, I.L.; Palysaeva, N.V.; Suponitsky, K.Y. The Synthesis of 4-(3-Nitrofurazan-4-yl)-3,5-dinitropyrazole and its Salts. J. Heterocycl. Chem. 2012, 49, 394–401. [Google Scholar] [CrossRef]
- Dalinger, I.L.; Vatsadze, I.A.; Shkineva, T.K.; Kormanov, A.V.; Kozeev, A.M.; Averkiev, B.B.; Dalinger, A.I.; Beklemishev, M.K.; Sheremetev, A.B. Synthesis and investigation of isomeric mono- and dinitro derivatives of 3-methyl-4-(pyrazol-3-yl)furazan. Chem. Heterocycl. Compd. 2015, 51, 545–552. [Google Scholar] [CrossRef]
- Dalinger, I.L.; Suponitsky, K.Y.; Pivkina, A.N.; Sheremetev, A.B. Novel Melt-Castable Energetic Pyrazole: A Pyrazolyl-Furazan Framework Bearing Five Nitro Groups. Propellants Explos. Pyrotech. 2016, 41, 789–792. [Google Scholar] [CrossRef]
- Kormanov, A.V.; Lipilin, D.L.; Shkineva, T.K.; Vatsadze, I.A.; Kozeev, A.M.; Dalinger, I.L. Synthesis and transformations of 3(5)-(3-methylfurazan-4-yl)-4-nitro-1H-pyrazole-5(3)-carboxylic acid. Chem. Heterocycl. Comp. 2017, 53, 876–882. [Google Scholar] [CrossRef]
- Dalinger, I.L.; Shkineva, T.K.; Vatsadze, I.A.; Kormanov, A.V.; Kozeev, A.M.; Suponitsky, K.Y.; Pivkina, A.N.; Sheremetev, A.B. Novel Energetic CNO oxidizer: Pernitro-Substituted Pyrazolyl-Furazan Framework. FirePhysChem 2021, 1, 83–89. [Google Scholar] [CrossRef]
- Strizhenko, K.V.; Vasil’ev, L.S.; Suponitsky, K.Y.; Sheremetev, A.B. 3-Amino-4-(1-amino-2-cyanovinyl)furazans: Synthesis and cyclization. Chem. Heterocycl. Comp. 2020, 56, 1103–1107. [Google Scholar] [CrossRef]
- Yan, T.; Yang, C.; Ma, J.; Cheng, G.; Yang, H. Intramolecular integration of multiple heterocyclic skeletons for energetic materials with enhanced energy & safety. Chem. Eng. J. 2022, 428, 131400. [Google Scholar] [CrossRef]
- Roy, K.; Kar, S.; Das, R.N. A Primer on QSAR/QSPR Modeling; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Suponitsky, K.Y.; Shkineva, T.K.; Dalinger, I.L. Density estimation method for individual compounds from X-ray diffraction analysis of their solvated forms. Chem. Heterocycl. Comp. 2022, 58, 539–542. [Google Scholar] [CrossRef]
- Suponitsky, K.Y.; Smol’yakov, A.F.; Ananyev, I.V.; Khakhalev, A.V.; Gidaspov, A.A.; Sheremetev, A.B. 3,4-Dinitrofurazan: Structural Nonequivalence of Ortho -Nitro Groups as a Key Feature of the Crystal Structure and Density. ChemistrySelect 2020, 5, 14543–14548. [Google Scholar] [CrossRef]
- Suponitsky, K.Y.; Anisimov, A.A.; Ananyev, I.V.; Lashakov, A.A.; Osintseva, S.V.; Zalomlenkov, V.A.; Gidaspov, A.A. On the influence of weak intermolecular interactions on the molecular crystal density of 1,3,5-triazine trinitroalkyl derivatives. Chem. Heterocycl. Comp. 2021, 57, 266–273. [Google Scholar] [CrossRef]
- Suponitsky, K.Y.; Fedyanin, I.V.; Karnoukhova, V.A.; Zalomlenkov, V.A.; Gidaspov, A.A.; Bakharev, V.V.; Sheremetev, A.B. Energetic Co-Crystal of a Primary Metal-Free Explosive with BTF. Ideal Pair for Co-Crystallization. Molecules 2021, 26, 7452. [Google Scholar] [CrossRef]
- Novikova, T.S.; Melnikova, T.M.; Kharitonova, O.V.; Kulagina, V.O.; Aleksandrova, N.S.; Sheremetev, A.B.; Pivina, T.S.; Khmelnitskii, L.I.; Novikov, S.S. An Effective Method for the Oxidation of Aminofurazans to Nitrofurazans. Mendeleev Commun. 1994, 4, 138–140. [Google Scholar] [CrossRef]
- Sheremetev, A.B. Efficient synthesis of nitrofurazans using HOF • MeCN. Russ. Chem. Bull. 2022, 71, 1818–1820. [Google Scholar] [CrossRef]
- Vinogradov, V.M.; Cherkasova, T.I.; Dalinger, I.L.; Shevelev, S.A. Nitropyrazoles. 5. Synthesis of 4-substituted 3-nitropyrazoles from 3-amino-4-pyrazolecarbonitrile. Russ. Chem. Bull. 1993, 42, 1552–1554. [Google Scholar] [CrossRef]
- Zhao, X.X.; Zhang, J.C.; Li, S.H.; Yang, Q.P.; Li, Y.C.; Pang, S.P. A Green and Facile Approach for Synthesis of Nitro Heteroaromatics in Water. Org. Process Res. Dev. 2014, 18, 886–890. [Google Scholar] [CrossRef]
- Sheremetev, A.B.; Aleksandrova, N.S.; Suponitsky, K.Y.; Antipin, M.Y.; Tartakovsky, V.A. One-pot synthesis of 4,6,8-trinitro-4,5,7,8-tetrahydro-6H-furazano[3,4-f]-1,3,5-triazepine in ionic liquids. Mendeleev. Commun. 2010, 20, 249–252. [Google Scholar] [CrossRef]
- Sheremetev, A.B.; Aleksandrova, N.S.; Semyakin, S.S.; Suponitsky, K.Y.; Lempert, D.B. Synthesis and Characterization of 3-(5-(Fluorodinitromethyl)-1H-1,2,4-triazol-3-yl)-4-nitrofurazan: A Novel Promising Energetic Component of Boron-based Fuels for Rocket Ramjet Engines. Chem. Asian J. 2019, 14, 4255–4261. [Google Scholar] [CrossRef] [PubMed]
- Dmitrienko, A.O.; Karnoukhova, V.A.; Potemkin, A.A.; Struchkova, M.I.; Kryazhevskikh, I.A.; Suponitsky, K.Y. The influence of halogen type on structural features of compounds containing α-halo-α,α-dinitroethyl moieties. Chem. Heterocycl. Comp. 2017, 53, 532–539. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules. A Quantum Theory; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- Keith, T.A. AIMAll (Version 15.05.18); TK Gristmill Software: Overland Park, KS, USA, 2015. [Google Scholar]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Espinosa, E.; Alkorta, I.; Rozas, I.; Elguero, J.; Molins, E. About the evaluation of the local kinetic, potential and total energy densities in closed-shell interactions. Chem. Phys. Lett. 2001, 336, 457–461. [Google Scholar] [CrossRef]
- Göbel, M.; Klapötke, T.M. Development and Testing of Energetic Materials: The Concept of High Densities Based on the Trinitroethyl Functionality. Adv. Funct. Mater. 2009, 19, 347–365. [Google Scholar] [CrossRef]
- Sheremetev, A.B.; Yudin, I.L.; Yu, K. Suponitsky, Ionic liquid-assisted synthesis of trinitroethyl esters. Mendeleev Commun. 2006, 16, 264–266. [Google Scholar] [CrossRef]
- Sheremetev, A.B.; Aleksandrova, N.S.; Palysaeva, N.V.; Struchkova, M.I.; Tartakovsky, V.A.; Suponitsky, K.Y. Ionic Liquids as Unique Solvents in One-Pot Synthesis of 4-( N,2,2,2-Tetranitroethylamino)-3-R-Furazans. Chem. Eur. J. 2013, 19, 12446–12457. [Google Scholar] [CrossRef]
- APEX2 and SAINT; Bruker AXS Inc.: Madison, WI, USA, 2014.
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Kudin, K.N., Jr.; Burant, J.C.; Millam, J.M.; et al. A. Gaussian 03, Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2004.
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
Torsion Angle | 5, Molecule A | 5, Molecule A′ | 1, Molecule A | 1, Molecule A′ |
---|---|---|---|---|
C4-C5-N7-O4 | 8.9(2) | 3.8(2) | 10.3(3) | 6.5(3) |
N5-C4-C3-C2 | 42.7(2) | 37.3(2) | 119.7(3) | 113.9(3) |
C2-C1-N3-O2 | 2.9(2) | 2.5(2) | −26.8(3) | 23.9(4) |
C3-C2-N4-O7 | - | - | −10.9(3) | 15.2(3) |
Torsion Angle | 5 in Cisoid Form (as in X-ray) | 5 in Transoid Form | 1 in Transoid Form (as in X-ray) | 1 in Cisoid Form |
---|---|---|---|---|
C4-C5-N7-O4 | 13.7 | −24.5 | −22.9 | −12.1 |
N5-C4-C3-C2 | 15.4 | 140.3 | 141.0 | 14.6 |
C2-C1-N3-O2 | 0.2 | −0.5 | −43.3 | 9.0 |
C3-C2-N4-O7 | - | - | −22.8 | 73.0 |
Molecular Unit or Whole Molecule | Isolated Molecule | Molecule in Crystal | ΔOED Densification | ||
---|---|---|---|---|---|
Volume | Density | Volume | Density | ||
Furazan ring | 71.37 | 1.583 | 58.66 | 1.927 | 0.344 |
Pyrazole ring | 68.73 | 1.572 | 56.91 | 1.901 | 0.329 |
NO2 group at furazan ring | 50.68 | 1.507 | 41.65 | 1.835 | 0.328 |
NO2 group at pyrazole ring | 52.32 | 1.460 | 41.72 | 1.831 | 0.371 |
CN group at pyrazole ring | 42.05 | 1.028 | 34.03 | 1.270 | 0.242 |
Whole molecule 5 | 285.15 | 1.463 | 232.98 | 1.790 | 0.327 |
Molecular Unit or Whole Molecule | Isolated Molecule | Molecule in Crystal | ΔOED Densification | ||
---|---|---|---|---|---|
Volume | Density | Volume | Density | ||
Furazan ring | 71.530 | 1.580 | 58.305 | 1.938 | 0.359 |
Pyrazole ring | 68.025 | 1.588 | 53.900 | 2.005 | 0.417 |
NO2 group at furazan ring | 50.274 | 1.520 | 38.360 | 1.992 | 0.472 |
NO2 group at pyrazole ring (at C1 atom) | 52.103 | 1.466 | 40.296 | 1.897 | 0.430 |
NO2 group at pyrazole ring (at C2 atom) | 49.146 | 1.555 | 37.263 | 2.051 | 0.496 |
Whole molecule 1 | 291.08 | 1.547 | 228.12 | 1.971 | 0.424 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suponitsky, K.Y.; Strizhenko, K.V. Synthesis and Crystal Structure of 3-(4-Cyano-3-nitro-1H-pyrazol-5-yl)-4-nitrofurazan: Comparison of the Influence of the NO2 and CN Groups on Crystal Packing and Density. Molbank 2023, 2023, M1533. https://doi.org/10.3390/M1533
Suponitsky KY, Strizhenko KV. Synthesis and Crystal Structure of 3-(4-Cyano-3-nitro-1H-pyrazol-5-yl)-4-nitrofurazan: Comparison of the Influence of the NO2 and CN Groups on Crystal Packing and Density. Molbank. 2023; 2023(1):M1533. https://doi.org/10.3390/M1533
Chicago/Turabian StyleSuponitsky, Kyrill Yu., and Kirill V. Strizhenko. 2023. "Synthesis and Crystal Structure of 3-(4-Cyano-3-nitro-1H-pyrazol-5-yl)-4-nitrofurazan: Comparison of the Influence of the NO2 and CN Groups on Crystal Packing and Density" Molbank 2023, no. 1: M1533. https://doi.org/10.3390/M1533
APA StyleSuponitsky, K. Y., & Strizhenko, K. V. (2023). Synthesis and Crystal Structure of 3-(4-Cyano-3-nitro-1H-pyrazol-5-yl)-4-nitrofurazan: Comparison of the Influence of the NO2 and CN Groups on Crystal Packing and Density. Molbank, 2023(1), M1533. https://doi.org/10.3390/M1533