Synthesis and Crystal Structure of 3-(4-Cyano-3-nitro-1H-pyrazol-5-yl)-4-nitrofurazan: Comparison of the Influence of the NO2 and CN Groups on Crystal Packing and Density
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sheremetev, A.B.; Makhova, N.N.; Friedrichsen, W. Monocyclic Furazans and Furoxans. Adv. Heterocycl. Chem. 2001, 78, 65–188. [Google Scholar] [CrossRef]
- Fershtat, L.L.; Makhova, N.N. 1,2,5-Oxadiazole-Based High-Energy-Density Materials: Synthesis and Performance. ChemPlusChem 2020, 85, 13–42. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, J.; Bi, F.; Wang, B. Energetic materials based on poly furazan and furoxan structures. Chin. Chem. Lett. 2020, 31, 2375–2394. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, M.J.; Zhao, W.; Qu, Y.; Xing, X.W.; Meng, J.W.; Liu, Y.C. Application and Development of 3,4-Bis(3-nitrofurazan-4-yl)furoxan (DNTF). Russ. J. Gen. Chem. 2021, 91, 445–455. [Google Scholar] [CrossRef]
- Tang, J.; Yang, H.; Cui, Y.; Cheng, G. Nitrogen-rich tricyclic-based energetic materials. Mater. Chem. Front. 2021, 5, 7108–7118. [Google Scholar] [CrossRef]
- Xiao, M.; Jin, X.; Zhou, J.; Hu, B. 1,2,5-Oxadiazole-1,2,3,4-tetrazole-based high-energy materials: Molecular design and screening. Struct. Chem. 2021, 32, 1619–1628. [Google Scholar] [CrossRef]
- Gulyaev, D.A.; Klenov, M.S.; Churakov, A.M.; Strelenko, Y.A.; Pivkina, A.N.; Tartakovsky, V.A. Synthesis of energetic compounds containing (3-nitro-1H-1,2,4-triazol-1-yl)-NNO-azoxy moiety. Russ. Chem. Bull. 2021, 70, 1599–1604. [Google Scholar] [CrossRef]
- Zhu, Y.; Ding, L.; Xu, L.; Chang, H.; Wang, X.; Zhang, X. Evaluation of the Thermal Hazard of the Oxidation Reaction in the Synthesis of 3,4-Bis(4-nitrofurazan-3-yl)furoxan. Org. Proc. Res. Dev. 2022, 26, 1389–1397. [Google Scholar] [CrossRef]
- Zaitsev, A.A.; Dalinger, I.L.; Shevelev, S.A. Dinitropyrazoles. Russ. Chem. Rev. 2009, 78, 589–627. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, Z.; Lan, D.; Jia, Q.; Liu, N.; Zhang, J.; Kou, K. Recent Advances in Synthesis and Properties of Nitrated-Pyrazoles Based Energetic Compounds. Molecules 2020, 25, 3475. [Google Scholar] [CrossRef]
- Zlotin, S.G.; Dalinger, I.L.; Makhova, N.N.; Tartakovsky, V.A. Nitro compounds as the core structures of promising energetic materials and versatile reagents for organic synthesis. Russ. Chem. Rev. 2020, 89, 1–54. [Google Scholar] [CrossRef]
- Chen, D.; Xiong, H.; Yang, H.; Tang, J.; Cheng, G. Nitropyrazole based tricyclic nitrogen-rich cation salts: A new class of promising insensitive energetic materials. FirePhysChem 2021, 1, 71–75. [Google Scholar] [CrossRef]
- Wu, B.; Yang, L.; Zhai, D.; Ma, C.; Pei, C. Facile synthesis of 4-amino-3,5-dinitropyrazolated energetic derivatives via 4-bromopyrazole and their performances. FirePhysChem 2021, 1, 76–82. [Google Scholar] [CrossRef]
- Lai, Y.; Liu, Y.; Huang, W.; Zeng, Z.; Yang, H.; Tang, Y. Synthesis and characterization of pyrazole- and imidazole- derived energetic compounds featuring ortho azido/nitro groups. FirePhysChem 2022, 2, 140–146. [Google Scholar] [CrossRef]
- Bölter, M.F.; Harter, A.; Klapötke, T.M.; Stierstorfer, J. Isomers of Dinitropyrazoles: Synthesis, comparison and Tuning of their Physicochemical Properties. ChemPlusChem 2018, 83, 804. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, J.L.; Wang, B.Z.; Qiu, L.L.; Xu, R.Q.; Sheremetev, A.B. Recent synthetic efforts towards high energydensity materials: How to design high-performance energetic structures? FirePhysChem 2022, 2, 83–139. [Google Scholar] [CrossRef]
- Sheremetev, A.B.; Yudin, I.L.; Palysaeva, N.V.; Suponitsky, K.Y. The Synthesis of 4-(3-Nitrofurazan-4-yl)-3,5-dinitropyrazole and its Salts. J. Heterocycl. Chem. 2012, 49, 394–401. [Google Scholar] [CrossRef]
- Dalinger, I.L.; Vatsadze, I.A.; Shkineva, T.K.; Kormanov, A.V.; Kozeev, A.M.; Averkiev, B.B.; Dalinger, A.I.; Beklemishev, M.K.; Sheremetev, A.B. Synthesis and investigation of isomeric mono- and dinitro derivatives of 3-methyl-4-(pyrazol-3-yl)furazan. Chem. Heterocycl. Compd. 2015, 51, 545–552. [Google Scholar] [CrossRef]
- Dalinger, I.L.; Suponitsky, K.Y.; Pivkina, A.N.; Sheremetev, A.B. Novel Melt-Castable Energetic Pyrazole: A Pyrazolyl-Furazan Framework Bearing Five Nitro Groups. Propellants Explos. Pyrotech. 2016, 41, 789–792. [Google Scholar] [CrossRef]
- Kormanov, A.V.; Lipilin, D.L.; Shkineva, T.K.; Vatsadze, I.A.; Kozeev, A.M.; Dalinger, I.L. Synthesis and transformations of 3(5)-(3-methylfurazan-4-yl)-4-nitro-1H-pyrazole-5(3)-carboxylic acid. Chem. Heterocycl. Comp. 2017, 53, 876–882. [Google Scholar] [CrossRef]
- Dalinger, I.L.; Shkineva, T.K.; Vatsadze, I.A.; Kormanov, A.V.; Kozeev, A.M.; Suponitsky, K.Y.; Pivkina, A.N.; Sheremetev, A.B. Novel Energetic CNO oxidizer: Pernitro-Substituted Pyrazolyl-Furazan Framework. FirePhysChem 2021, 1, 83–89. [Google Scholar] [CrossRef]
- Strizhenko, K.V.; Vasil’ev, L.S.; Suponitsky, K.Y.; Sheremetev, A.B. 3-Amino-4-(1-amino-2-cyanovinyl)furazans: Synthesis and cyclization. Chem. Heterocycl. Comp. 2020, 56, 1103–1107. [Google Scholar] [CrossRef]
- Yan, T.; Yang, C.; Ma, J.; Cheng, G.; Yang, H. Intramolecular integration of multiple heterocyclic skeletons for energetic materials with enhanced energy & safety. Chem. Eng. J. 2022, 428, 131400. [Google Scholar] [CrossRef]
- Roy, K.; Kar, S.; Das, R.N. A Primer on QSAR/QSPR Modeling; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Suponitsky, K.Y.; Shkineva, T.K.; Dalinger, I.L. Density estimation method for individual compounds from X-ray diffraction analysis of their solvated forms. Chem. Heterocycl. Comp. 2022, 58, 539–542. [Google Scholar] [CrossRef]
- Suponitsky, K.Y.; Smol’yakov, A.F.; Ananyev, I.V.; Khakhalev, A.V.; Gidaspov, A.A.; Sheremetev, A.B. 3,4-Dinitrofurazan: Structural Nonequivalence of Ortho -Nitro Groups as a Key Feature of the Crystal Structure and Density. ChemistrySelect 2020, 5, 14543–14548. [Google Scholar] [CrossRef]
- Suponitsky, K.Y.; Anisimov, A.A.; Ananyev, I.V.; Lashakov, A.A.; Osintseva, S.V.; Zalomlenkov, V.A.; Gidaspov, A.A. On the influence of weak intermolecular interactions on the molecular crystal density of 1,3,5-triazine trinitroalkyl derivatives. Chem. Heterocycl. Comp. 2021, 57, 266–273. [Google Scholar] [CrossRef]
- Suponitsky, K.Y.; Fedyanin, I.V.; Karnoukhova, V.A.; Zalomlenkov, V.A.; Gidaspov, A.A.; Bakharev, V.V.; Sheremetev, A.B. Energetic Co-Crystal of a Primary Metal-Free Explosive with BTF. Ideal Pair for Co-Crystallization. Molecules 2021, 26, 7452. [Google Scholar] [CrossRef]
- Novikova, T.S.; Melnikova, T.M.; Kharitonova, O.V.; Kulagina, V.O.; Aleksandrova, N.S.; Sheremetev, A.B.; Pivina, T.S.; Khmelnitskii, L.I.; Novikov, S.S. An Effective Method for the Oxidation of Aminofurazans to Nitrofurazans. Mendeleev Commun. 1994, 4, 138–140. [Google Scholar] [CrossRef]
- Sheremetev, A.B. Efficient synthesis of nitrofurazans using HOF • MeCN. Russ. Chem. Bull. 2022, 71, 1818–1820. [Google Scholar] [CrossRef]
- Vinogradov, V.M.; Cherkasova, T.I.; Dalinger, I.L.; Shevelev, S.A. Nitropyrazoles. 5. Synthesis of 4-substituted 3-nitropyrazoles from 3-amino-4-pyrazolecarbonitrile. Russ. Chem. Bull. 1993, 42, 1552–1554. [Google Scholar] [CrossRef]
- Zhao, X.X.; Zhang, J.C.; Li, S.H.; Yang, Q.P.; Li, Y.C.; Pang, S.P. A Green and Facile Approach for Synthesis of Nitro Heteroaromatics in Water. Org. Process Res. Dev. 2014, 18, 886–890. [Google Scholar] [CrossRef]
- Sheremetev, A.B.; Aleksandrova, N.S.; Suponitsky, K.Y.; Antipin, M.Y.; Tartakovsky, V.A. One-pot synthesis of 4,6,8-trinitro-4,5,7,8-tetrahydro-6H-furazano[3,4-f]-1,3,5-triazepine in ionic liquids. Mendeleev. Commun. 2010, 20, 249–252. [Google Scholar] [CrossRef]
- Sheremetev, A.B.; Aleksandrova, N.S.; Semyakin, S.S.; Suponitsky, K.Y.; Lempert, D.B. Synthesis and Characterization of 3-(5-(Fluorodinitromethyl)-1H-1,2,4-triazol-3-yl)-4-nitrofurazan: A Novel Promising Energetic Component of Boron-based Fuels for Rocket Ramjet Engines. Chem. Asian J. 2019, 14, 4255–4261. [Google Scholar] [CrossRef] [PubMed]
- Dmitrienko, A.O.; Karnoukhova, V.A.; Potemkin, A.A.; Struchkova, M.I.; Kryazhevskikh, I.A.; Suponitsky, K.Y. The influence of halogen type on structural features of compounds containing α-halo-α,α-dinitroethyl moieties. Chem. Heterocycl. Comp. 2017, 53, 532–539. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules. A Quantum Theory; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- Keith, T.A. AIMAll (Version 15.05.18); TK Gristmill Software: Overland Park, KS, USA, 2015. [Google Scholar]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Espinosa, E.; Alkorta, I.; Rozas, I.; Elguero, J.; Molins, E. About the evaluation of the local kinetic, potential and total energy densities in closed-shell interactions. Chem. Phys. Lett. 2001, 336, 457–461. [Google Scholar] [CrossRef]
- Göbel, M.; Klapötke, T.M. Development and Testing of Energetic Materials: The Concept of High Densities Based on the Trinitroethyl Functionality. Adv. Funct. Mater. 2009, 19, 347–365. [Google Scholar] [CrossRef]
- Sheremetev, A.B.; Yudin, I.L.; Yu, K. Suponitsky, Ionic liquid-assisted synthesis of trinitroethyl esters. Mendeleev Commun. 2006, 16, 264–266. [Google Scholar] [CrossRef]
- Sheremetev, A.B.; Aleksandrova, N.S.; Palysaeva, N.V.; Struchkova, M.I.; Tartakovsky, V.A.; Suponitsky, K.Y. Ionic Liquids as Unique Solvents in One-Pot Synthesis of 4-( N,2,2,2-Tetranitroethylamino)-3-R-Furazans. Chem. Eur. J. 2013, 19, 12446–12457. [Google Scholar] [CrossRef]
- APEX2 and SAINT; Bruker AXS Inc.: Madison, WI, USA, 2014.
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Kudin, K.N., Jr.; Burant, J.C.; Millam, J.M.; et al. A. Gaussian 03, Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2004.
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
Torsion Angle | 5, Molecule A | 5, Molecule A′ | 1, Molecule A | 1, Molecule A′ |
---|---|---|---|---|
C4-C5-N7-O4 | 8.9(2) | 3.8(2) | 10.3(3) | 6.5(3) |
N5-C4-C3-C2 | 42.7(2) | 37.3(2) | 119.7(3) | 113.9(3) |
C2-C1-N3-O2 | 2.9(2) | 2.5(2) | −26.8(3) | 23.9(4) |
C3-C2-N4-O7 | - | - | −10.9(3) | 15.2(3) |
Torsion Angle | 5 in Cisoid Form (as in X-ray) | 5 in Transoid Form | 1 in Transoid Form (as in X-ray) | 1 in Cisoid Form |
---|---|---|---|---|
C4-C5-N7-O4 | 13.7 | −24.5 | −22.9 | −12.1 |
N5-C4-C3-C2 | 15.4 | 140.3 | 141.0 | 14.6 |
C2-C1-N3-O2 | 0.2 | −0.5 | −43.3 | 9.0 |
C3-C2-N4-O7 | - | - | −22.8 | 73.0 |
Molecular Unit or Whole Molecule | Isolated Molecule | Molecule in Crystal | ΔOED Densification | ||
---|---|---|---|---|---|
Volume | Density | Volume | Density | ||
Furazan ring | 71.37 | 1.583 | 58.66 | 1.927 | 0.344 |
Pyrazole ring | 68.73 | 1.572 | 56.91 | 1.901 | 0.329 |
NO2 group at furazan ring | 50.68 | 1.507 | 41.65 | 1.835 | 0.328 |
NO2 group at pyrazole ring | 52.32 | 1.460 | 41.72 | 1.831 | 0.371 |
CN group at pyrazole ring | 42.05 | 1.028 | 34.03 | 1.270 | 0.242 |
Whole molecule 5 | 285.15 | 1.463 | 232.98 | 1.790 | 0.327 |
Molecular Unit or Whole Molecule | Isolated Molecule | Molecule in Crystal | ΔOED Densification | ||
---|---|---|---|---|---|
Volume | Density | Volume | Density | ||
Furazan ring | 71.530 | 1.580 | 58.305 | 1.938 | 0.359 |
Pyrazole ring | 68.025 | 1.588 | 53.900 | 2.005 | 0.417 |
NO2 group at furazan ring | 50.274 | 1.520 | 38.360 | 1.992 | 0.472 |
NO2 group at pyrazole ring (at C1 atom) | 52.103 | 1.466 | 40.296 | 1.897 | 0.430 |
NO2 group at pyrazole ring (at C2 atom) | 49.146 | 1.555 | 37.263 | 2.051 | 0.496 |
Whole molecule 1 | 291.08 | 1.547 | 228.12 | 1.971 | 0.424 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suponitsky, K.Y.; Strizhenko, K.V. Synthesis and Crystal Structure of 3-(4-Cyano-3-nitro-1H-pyrazol-5-yl)-4-nitrofurazan: Comparison of the Influence of the NO2 and CN Groups on Crystal Packing and Density. Molbank 2023, 2023, M1533. https://doi.org/10.3390/M1533
Suponitsky KY, Strizhenko KV. Synthesis and Crystal Structure of 3-(4-Cyano-3-nitro-1H-pyrazol-5-yl)-4-nitrofurazan: Comparison of the Influence of the NO2 and CN Groups on Crystal Packing and Density. Molbank. 2023; 2023(1):M1533. https://doi.org/10.3390/M1533
Chicago/Turabian StyleSuponitsky, Kyrill Yu., and Kirill V. Strizhenko. 2023. "Synthesis and Crystal Structure of 3-(4-Cyano-3-nitro-1H-pyrazol-5-yl)-4-nitrofurazan: Comparison of the Influence of the NO2 and CN Groups on Crystal Packing and Density" Molbank 2023, no. 1: M1533. https://doi.org/10.3390/M1533
APA StyleSuponitsky, K. Y., & Strizhenko, K. V. (2023). Synthesis and Crystal Structure of 3-(4-Cyano-3-nitro-1H-pyrazol-5-yl)-4-nitrofurazan: Comparison of the Influence of the NO2 and CN Groups on Crystal Packing and Density. Molbank, 2023(1), M1533. https://doi.org/10.3390/M1533