Ultrasound Assisted One-Pot Synthesis of Novel 3-(Aryl)-5-((4-(phenyldiazenyl)phenoxy)methyl)isoxazolines in Water
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
- 3-(Aryl)-5-((4-(phenyldiazenyl)phenoxy)methyl)isoxazoline4a–c: To a solution of aromatic aldehyde 1a–c (1 mmol) and hydroxylamine hydrochloride 2 (1.2 mmol) in H2O (10 mL), SDIC (0.5 mmol) was added. The reaction mixture was sonicated for 10 min at 25 °C (TLC monitoring). 4-(Allyloxy)azobenzene 3 was then added sequentially, and the mixture was sonicated using an ultrasonic bath (47 kHz) for 15 to 20 min (TLC monitoring). The mixture was extracted using CH2Cl2 (2 × 15 mL) and washed with saturated brine solution (15 mL × 2) and water (20 mL), dried over Na2SO4, and concentrated in vacuum. To obtain the pure azo-isoxazolines 4a–c, the residue was purified by recrystallization in EtOH, by dissolving the crude product in heated ethanol (10 mL). Then, the mixture was cooled down and the pure azo-isoxazolines 4a–c were isolated by filtration.
- 3-(4-Methylphenyl)-5-((4-(phenyldiazenyl)phenoxy)methyl)-isoxazoline (4a): Yellow solid, yield 90%, m.p. 124–125 °C, TLC (cyclohexane/AcOEt, 5/5, v/v) Rf = 0.48; 1H NMR (400 MHz, CDCl3) δ 7.99–7.95 (m, 2H, HAr), 7.94–7.91 (m, 2H, HAr), 7.63 (d, J = 8.2 Hz, 2H, HAr), 7.56–7.50 (m, 2H, HAr), 7.49–7.45 (m, 1H, HAr), 7.28–7.24 (m, 2H, HAr), 7.06 (d, J = 9.0 Hz, 2H, HAr), 5.22–5.11 (m, 1H, C5H isoxazoline), 4.28 (dd, J = 9.8, 5.0 Hz, 1H, N-CH), 4.18 (dd, J = 9.9, 5.6 Hz, 1H, N-CH), 3.57 (dd, J = 16.7, 10.7 Hz, 1H, C4H isoxazoline), 3.42 (dd, J = 16.7, 6.9 Hz, 1H, C4H isoxazoline), 2.42 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 160.9, 156.4, 152.5, 147.2, 140.6, 130.6, 129.5 (2C), 129.1 (2C), 126.8 (2C), 126.4, 124.9 (2C), 122.6 (2C), 114.9 (2C), 78.4, 68.9, 37.8, 21.5; HRMS: Calcd. for C23H21N3O2H+ ([M + H]+): 372.1634, Found: 372.1692.
- 3-(4-Chlorophenyl)-5-((4-(phenyldiazenyl)phenoxy)methyl)-isoxazoline (4b): Yellow solid, yield 80%, m.p. 130–132 °C, TLC (cyclohexane/AcOEt, 5/5, v/v) Rf = 0.5; 1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 9.0 Hz, 2H, HAr), 7.93–7.89 (m, 2H, HAr), 7.67 (d, J = 8.6 Hz, 2H, HAr), 7.56–7.50 (m, 2H, HAr), 7.48 (d, J = 7.3 Hz, 1H, HAr), 7.43 (d, J = 8.6 Hz, 2H, HAr), 7.05 (d, J = 9.0 Hz, 2H, HAr), 5.24–5.15 (m, 1H, C5H isoxazoline), 4.29 (dd, J = 9.9, 4.8 Hz, 1H, N-CH), 4.19 (dd, J = 9.9, 5.4 Hz, 1H, N-CH), 3.55 (dd, J = 16.8, 10.8 Hz, 1H, C4H isoxazoline), 3.42 (dd, J = 16.7, 7.1 Hz, 1H, C4H isoxazoline). 13C NMR (101 MHz, CDCl3) δ 160.8, 155.3, 152.6, 147.1, 136.0, 130.6, 129.1 (2C), 129.1 (2C), 128.0 (2C), 127.8, 124.8 (2C), 122.6 (2C), 114.9 (2C), 78.9, 68.7, 37.4; HRMS: Calcd. for C22H18ClN3O2H+: ([M + H]+): 392.1088, Found: 392.1142.
- 3-(4-Fluorophenyl)-5-((4-(phenyldiazenyl)phenoxy)methyl)-isoxazoline (4c): Yellow solid, yield 75%, m.p. 135–137 °C, TLC (cyclohexane/AcOEt, 6/4, v/v) Rf = 0.6; 1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 9.0 Hz, 2H, HAr), 7.93–7.88 (m, 2H, HAr), 7.76–7.69 (m, 2H, HAr), 7.56–7.50 (m, 2H, HAr), 7.49–7.44 (m, 1H, HAr), 7.18–7.11 (m, 2H, HAr), 7.05 (d, J = 9.0 Hz, 2H, HAr), 5.23–5.14 (m, 1H, C5H isoxazoline), 4.28 (dd, J = 9.9, 4.9 Hz, 1H, N-CH), 4.18 (dd, J = 9.9, 5.6 Hz, 1H, N-CH), 3.56 (dd, J = 16.7, 10.7 Hz, 1H, C4H isoxazoline), 3.42 (dd, J = 16.7, 7.0 Hz, 1H, C4H isoxazoline). 13C NMR (101 MHz, CDCl3) δ 163.89 (d, J = 250.9 Hz), 160.8, 155.5, 152.6, 147.4, 130.6, 129.1 (2C), 128.8, 128.7, 125.5 (d, J = 3.6 Hz), 124.8 (2C), 122.6 (2C), 116.1, 115.9, 114.9 (2C), 78.7, 68.7, 37.7.; HRMS: Calcd. for C22H18FN3O2H+: ([M + H]+): 376.1383, Found: 376.1440.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Benkhaya, S.; M’Rabet, S.; El Harfi, A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 2020, 6, e03271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahir, T.; Ashfaq, M.; Saleem, M.; Rafiq, M.; Shahzad, M.I.; Kotwica-Mojzych, K.; Mojzych, M. Pyridine scaffolds, phenols and derivatives of azo moiety: Current therapeutic perspectives. Molecules 2021, 26, 4872. [Google Scholar] [CrossRef] [PubMed]
- Mezgebe, K.; Mulugeta, E. Synthesis and pharmacological activities of azo dye derivatives incorporating heterocyclic scaffolds: A review. RSC Adv. 2022, 12, 25932–25946. [Google Scholar] [CrossRef]
- Alsantali, R.I.; Raja, Q.A.; Alzahrani, A.Y.; Sadiq, A.; Naeem, N.; Mughal, E.U.; Al-Rooqi, M.M.; El Guesmi, N.; Moussa, Z.; Ahmed, S.A. Miscellaneous azo dyes: A comprehensive review on recent advancements in biological and industrial applications. Dyes Pigments 2022, 199, 110050. [Google Scholar] [CrossRef]
- Goyard, D.; Kónya, B.; Chajistamatiou, A.S.; Chrysina, E.D.; Leroy, J.; Balzarin, S.; Tournier, M.; Tousch, D.; Petit, P.; Duret, C.; et al. Glucose-derived spiro-isoxazolines are anti-hyperglycemic agents against type 2 diabetes through glycogen phosphorylase inhibition. Eur. J. Med. Chem. 2016, 108, 444–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, K.; Kumar, V.; Sharma, A.K.; Gupta, G.K. Isoxazoline containing natural products as anticancer agents: A review. Eur. J. Med. Chem. 2014, 77, 121–133. [Google Scholar] [CrossRef]
- Mota, F.V.B.; de Araújo Neta, M.S.; de Souza Franco, E.; Bastos, I.V.G.A.; da Araújo, L.C.C.; da Silva, S.C.; de Oliveira, T.B.; Souza, E.K.; de Almeida, V.M.; Ximenes, R.M.; et al. Evaluation of anti-inflammatory activity and molecular docking study of new aza-bicyclic isoxazoline acylhydrazone derivatives. Medchemcomm 2019, 10, 1916–1925. [Google Scholar] [CrossRef]
- Nikam, M.D.; Mahajan, P.S.; Damale, M.G.; Sangshetti, J.N.; Dabhade, S.K.; Shinde, D.W.; Gill, C.H. Synthesis, molecular docking and biological evaluation of some novel tetrazolo [1,5-a] quinoline incorporated pyrazoline and isoxazoline derivatives. Med. Chem. Res. 2015, 24, 3372–3386. [Google Scholar] [CrossRef]
- Maurya, R.; Ahmad, A.; Gupta, P.; Chand, K.; Kumar, M.; Rawat, P.; Rasheed, N.; Palit, G. Synthesis of novel isoxazolines via 1, 3-dipolar cycloaddition and evaluation of anti-stress activity. Med. Chem. Res. 2011, 20, 139–145. [Google Scholar] [CrossRef]
- Huang, M.; Suk, D.H.; Cho, N.C.; Bhattarai, D.; Kang, S.B.; Kim, Y.; Pae, A.N.; Rhim, H.; Keum, G. Synthesis and biological evaluation of isoxazoline derivatives as potent M1 muscarinic acetylcholine receptor agonists. Bioorg. Med. Chem. Lett. 2015, 25, 1546–1551. [Google Scholar] [CrossRef]
- Sreenivasa, S.; Shankar, B.J.; Mohan, N.R. Synthesis and Evaluation of Anti-inflammatory and Analgesic Activity of Isoxazoline Bearing Tris (heterocycles). Indo Am. J. Pharm. Res. 2014, 4, 2485–2490. [Google Scholar]
- Liu, Z.; Han, M.; Yan, X.; Cheng, W.; Tang, Z.; Cui, L.; Yang, R.; Guo, Y. Design, Synthesis, and Biological Evaluation of Novel Osthole-Based Isoxazoline Derivatives as Insecticide Candidates. J. Agric. Food Chem. 2022, 70, 7921–7928. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Ouyang, L.; Jin, Q.; Zhang, J.; Luo, R. Recent advances in the oxime-participating synthesis of isoxazolines. Org. Biomol. Chem. 2020, 18, 4709–4716. [Google Scholar] [CrossRef] [PubMed]
- Pellissier, H. Enantioselective Nickel-Catalysed Cycloaddition Reactions. In Enantioselective Nickel-Catalyzed Transformations; Royal Society of Chemistry: London, UK, 2016; Chapter 1; pp. 1–35. [Google Scholar]
- Yamamoto, Y.; Ito, K. Carbon-Carbon Bond Formation via Ruthenacycle Intermediates. In Ruthenium in Organic Synthesis; Murahashi, S.-I., Ed.; Wiley: Hoboken, NJ, USA, 2004; pp. 96–117. [Google Scholar]
- Yoshimura, A.; Saito, A.; Yusubov, M.S.; Zhdankin, V.V. Synthesis of oxazoline and oxazole derivatives by hypervalent-iodine-mediated oxidative cycloaddition reactions. Synthesis 2020, 52, 2299–2310. [Google Scholar] [CrossRef]
- Bhosale, S.; Kurhade, S.; Vyas, S.; Palle, V.P.; Bhuniya, D. Magtrieve™(CrO2) and MnO2 mediated oxidation of aldoximes: Studying the reaction course. Tetrahedron 2010, 66, 9582–9588. [Google Scholar] [CrossRef]
- Suga, H.; Inoue, K.; Inoue, S.; Kakehi, A.; Shiro, M. Chiral 2, 6-bis (oxazolinyl) pyridine—rare earth metal complexes as catalysts for highly enantioselective 1, 3-dipolar cycloaddition reactions of 2-benzopyrylium-4-olates. J. Org. Chem. 2005, 70, 47–56, and references therein. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Clerget, M.; Yu, J.; Kincaid, J.R.; Walde, P.; Gallou, F.; Lipshutz, B.H. Water as the reaction medium in organic chemistry: From our worst enemy to our best friend. Chem. Sci. 2021, 12, 4237–4266. [Google Scholar] [CrossRef]
- Nagaraju, S.; Sathish, K.; Paplal, B.; Kashinath, D. “On-water” catalyst-free, one-pot synthesis of quaternary centered and spiro-tetrahydrothiophene-barbiturate hybrids. Tetrahedron Lett. 2017, 58, 2865–2871. [Google Scholar] [CrossRef]
- Chakraborty, B.; Sharma, C.D. A new route to the synthesis of isoxazoline derivatives from dihydropyran via cycloaddition reaction in ionic liquid. Tetrahedron Lett. 2013, 54, 5532–5536. [Google Scholar] [CrossRef]
- Mabrour, M.; Bougrin, K.; Benhida, R.; Loupy, A.; Soufiaoui, M. An efficient one-step regiospecific synthesis of novel isoxazolines and isoxazoles of N-substituted saccharin derivatives through solvent-free microwave-assisted [3 + 2] cycloaddition. Tetrahedron Lett. 2007, 48, 443–447. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, H.; Li, W.; Xie, Q.; Yu, L.; Shao, L. Synthetic access to isoxazoline-functionalized isoquinolines via microwave-assisted iminoxyl radical-participated cascade cyclization of vinyl isocyanides. Org. Biomol. Chem. 2018, 16, 4996–5005. [Google Scholar] [CrossRef] [PubMed]
- Dofe, V.S.; Sarkate, A.P.; Tiwari, S.V.; Lokwani, D.K.; Karnik, K.S.; Kale, I.A.; Dodamanie, S.; Jalalpuree, S.S.; Burra, P.V. Ultrasound assisted synthesis of tetrazole based pyrazolines and isoxazolines as potent anticancer agents via inhibition of tubulin polymerization. Bioorg. Med. Chem. Lett. 2020, 30, 127592. [Google Scholar] [CrossRef] [PubMed]
- Talha, A.; Tachallait, H.; Benhida, R.; Bougrin, K. Green one-pot four-component synthesis of 3, 5-disubstituted isoxazoles-sulfonates and sulfonamides using a combination of NaDCC as metal-free catalyst and ultrasonic activation in water. Tetrahedron Lett. 2021, 81, 153366. [Google Scholar] [CrossRef]
- Thari, F.Z.; Tachallait, H.; El Alaoui, N.E.; Talha, A.; Arshad, S.; Álvarez, E.; Karrouchi, K.; Bougrin, K. Ultrasound-assisted one-pot green synthesis of new N-substituted-5-arylidene-thiazolidine-2,4-dione-isoxazoline derivatives using NaCl/Oxone/Na3PO4 in aqueous media. Ultrason. Sonochem. 2020, 68, 105222. [Google Scholar] [CrossRef] [PubMed]
- Talha, A.; Mourhly, A.; Tachallait, H.; Driowya, M.; El Hamidi, A.; Arshad, S.; Karrouchi, K.; Arsalane, S.; Bougrin, K. One-pot four-component tandem synthesis of novel sulfonamide-1,2,3-triazoles catalyzed by reusable copper (II)-adsorbed on mesoporous silica under ultrasound irradiation. Tetrahedron 2021, 90, 132215. [Google Scholar] [CrossRef]
- Talha, A.; Favreau, C.; Bourgoin, M.; Robert, G.; Auberger, P.; Ammari, L.E.; Saadi, M.; Benhida, R.; Martin, A.R.; Bougrin, K. Ultrasound-assisted one-pot three-component synthesis of new isoxazolines bearing sulfonamides and their evaluation against hematological malignancies. Ultrason. Sonochem. 2021, 78, 105748. [Google Scholar] [CrossRef] [PubMed]
- Tachallait, H.; Driowya, M.; Álvarez, E.; Benhida, R.; Bougrin, K. Water Promoted One-pot Three-Step Synthesis of Novel N-Saccharin Isoxazolines/Isoxazoles Using KI/Oxone Under Ultrasonic Activation. Curr. Org. Chem. 2019, 23, 1270–1281. [Google Scholar] [CrossRef]
- Alaoui, S.; Driowya, M.; Demange, L.; Benhida, R.; Bougrin, K. Ultrasound-assisted facile one-pot sequential synthesis of novel sulfonamide-isoxazoles using cerium (IV) ammonium nitrate (CAN) as an efficient oxidant in aqueous medium. Ultrason. Sonochem. 2018, 40, 289–297. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Mahmoudi, A.; Karrouchi, K.; Tachallait, H.; Bougrin, K. Ultrasound Assisted One-Pot Synthesis of Novel 3-(Aryl)-5-((4-(phenyldiazenyl)phenoxy)methyl)isoxazolines in Water. Molbank 2022, 2022, M1529. https://doi.org/10.3390/M1529
El Mahmoudi A, Karrouchi K, Tachallait H, Bougrin K. Ultrasound Assisted One-Pot Synthesis of Novel 3-(Aryl)-5-((4-(phenyldiazenyl)phenoxy)methyl)isoxazolines in Water. Molbank. 2022; 2022(4):M1529. https://doi.org/10.3390/M1529
Chicago/Turabian StyleEl Mahmoudi, Ayoub, Khalid Karrouchi, Hamza Tachallait, and Khalid Bougrin. 2022. "Ultrasound Assisted One-Pot Synthesis of Novel 3-(Aryl)-5-((4-(phenyldiazenyl)phenoxy)methyl)isoxazolines in Water" Molbank 2022, no. 4: M1529. https://doi.org/10.3390/M1529
APA StyleEl Mahmoudi, A., Karrouchi, K., Tachallait, H., & Bougrin, K. (2022). Ultrasound Assisted One-Pot Synthesis of Novel 3-(Aryl)-5-((4-(phenyldiazenyl)phenoxy)methyl)isoxazolines in Water. Molbank, 2022(4), M1529. https://doi.org/10.3390/M1529